精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,过椭圆右焦点的直线交椭圆两点, 的中点,且直线的斜率为

求椭圆的方程;

设另一直线与椭圆交于两点,原点到直线的距离为,求面积的最大值.

【答案】(Ⅰ);(Ⅱ).

【解析】试题分析:(Ⅰ)由题意,焦点,所以,再由,得

进而得,即可得到椭圆的标准方程.

(Ⅱ)由题意,①当直线的斜率不存在时或者斜率为0时,易得

②设直线的方程为: ,由题意,原点到直线的距离得到

设交点的坐标分别为,联立方程组,得到,再由弦长公式,利用均值不等式,即可求解最值,进而得到面积的最值.

试题解析:

(Ⅰ)由题意,直线轴交于焦点: ,设 ,则:

,又

即椭圆的方程为:

(Ⅱ)由题意,①当直线的斜率不存在时或者斜率为0时,易得

②当直线的斜率存在时且不为0时,设直线的方程为: ,由题意,原点到直线的距离为,故

.设交点的坐标分别为:

则:

由题意

当且仅当,即时等号成立,

综上所述,当直线的斜率时,

时, 面积的最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

(1)设 ,若函数存在零点,求的取值范围;

(2)若是偶函数,设,若函数的图象只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a4x﹣a2x+1+1﹣b(a>0)在区间[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)﹣k4x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求实数m的值;
(2)若A∩C=,求实数b的取值范围;
(3)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣a是奇函数
(1)求实数a的值;
(2)判断函数在R上的单调性并用函数单调性的定义证明;
(3)对任意的实数x,不等式f(x)<m﹣1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=x2+bx+c满足f(2)=f(﹣2),且函数的f(x)的一个零点为1. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)对任意的 ,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:

单价x(元/件)

60

62

64

66

68

70

销量y(件)

91

84

81

75

70

67

I)画出散点图,并求关于的回归方程;

II)已知该产品的成本是36/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(1)若函数的图象在点处的切线方程为,求实数 的值;

(2)当时,若存在 ,使成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数, ),直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)为曲线上任意一点, 为直线任意一点,求的最小值.

查看答案和解析>>

同步练习册答案