精英家教网 > 高中数学 > 题目详情

【题目】在某城市街道上一侧路边边缘某处安装路灯,路宽米,灯杆4米,且与灯柱角,路灯采用可旋转灯口方向的锥形灯罩,灯罩轴线与灯的边缘光线(如图 )都成角,当灯罩轴线与灯杆垂直时,灯罩轴线正好通过的中点

I求灯柱的高为多少米;

II,且,求灯所照射路面宽度的最小值

【答案】III

【解析】试题分析:(1)连接,则在直角与直角中,根据直角三角形的性质可得,解得从而可得;(2)以为坐标原点, 分别为轴,建立直角坐标系,可求出 所以,切化弦后利用两角和与差的正弦公式以及辅助角公式可得结合,可得到取最小值.

试题解析:1)连接,则

在直角

在直角

则有,解得

在直角 .

2为坐标原点, 分别为轴,建立直角坐标系,则

,又

①若,由(1)知,

②若

则直线的方程为,则

直线的方程为,则

所以

==

,所以当且仅当时, 取最小值

综合①②知,当时, 取最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.

(1)求他们选择的项目所属类别互不相同的概率;

(2)ξ3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足,其中,且 为常数.

(1)若是等差数列,且公差,求的值;

(2)若,且存在,使得对任意的都成立,求的最小值;

(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A, B, C的对边分别为a, b, c,.

求角C的大小;

Ⅱ)设角A的平分线交BCD,且AD=,若b=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中, ,点 分别是的中点.

(Ⅰ)求证: 平面

(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图,在三棱柱中,平面平面,且均为正三角形.

(1)在上找一点,使得平面,并说明理由.

(2)若的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,圆,以动点为圆心的圆经过点,且圆与圆内切.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)若直线过点,且与曲线交于两点,则在轴上是否存在一点,使得轴平分?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】炼钢是一个氧化降碳的过程钢水含碳量的多少直接影响冶炼时间的长短必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料溶化完毕时钢水的含碳量x与冶炼时间y(从炉料溶化完毕到出钢的时间)的一组数据如表所示:

x(0.01%)

104

180

190

177

147

134

150

191

204

121

y/min

100

200

210

185

155

135

170

205

235

125

(1)yx是否具有线性相关关系?

(2)如果yx具有线性相关关系求回归直线方程.

(3)预报当钢水含碳量为1600.01%应冶炼多少分钟?

参考公式:r  

线性回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面是边长为2的等边三角形,平面于点,且平面.

(1)求证:

(2)若四边形是正方形,且,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案