精英家教网 > 高中数学 > 题目详情

某公司以每吨10万元的价格销售某种产品,每年可售出该产品1000吨,若将该产品每吨的价格上涨x%,则每年的销售数量将减少,该产品每吨的价格上涨百分之几,可使销售的总金额最大?

50%

解析试题分析:根据销售总金额等于每吨价格与销售量的乘积,列函数关系式.当价格上涨x%时,销售总金额为,这是一个关于x%的二次函数,其定义域为对称轴为时,销售总金额取最大值.
试题解析:由题设,当价格上涨x%时,销售总金额为y,则
(万元)

当x=50时,万元.
即该产品每吨的价格上涨50%时,销售总金额最大.
考点:二次函数最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数满足对任意的恒有,且当时,.
(1)求的值;
(2)判断的单调性
(3)若,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的取值范围,使在闭区间上是单调函数;
(2)当时,函数的最大值是关于的函数.求
(3)求实数的取值范围,使得对任意的,恒有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且
对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足
()百米,百米.

(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若对于区间内的任意,总有成立,求实数的取值范围;
(2)若函数在区间内有两个不同的零点,求:
①实数的取值范围; ②的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两条直线l1:y=m和l2:y=,l1与函数y=|log2x|的图象从左至右相交于点A、B,l2与函数y=|log2x|的图象从左至右相交于点C、D.记线段AC和BD在x轴上的投影长度分别为a、b.当m变化时,求的最小值.

查看答案和解析>>

同步练习册答案