精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求的取值范围,使在闭区间上是单调函数;
(2)当时,函数的最大值是关于的函数.求
(3)求实数的取值范围,使得对任意的,恒有成立.

(1);(2) ;(3).

解析试题分析:(1)求出函数f(x)=x2+ax+3-a图象的对称轴为x=.由f(x)在闭区间[-1,3]上是单调函数,能够求出a的取值范围;(2)当a≥0时,m(a)=f(0)=3-a;当-4≤a<0时,m(a)=f()=a2-a+3;当a<-4时,m(a)=f(2)=a+7.分段讨论并比较大小得,能够求出m(a)的最大值及;(3)将时恒成立化成时恒成立,分类讨论当时显然成立,当时,时恒成立,即可求出a的范围.
解:(1)函数图像的对称轴为.
因为在闭区间上是单调函数,所以.
.
(2)当


(3)时恒成立
时恒成立
时恒成立
时显然成立
时,时恒成立
.
考点:1.二次函数的性质;2.二次函数在闭区间上的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(a≠0)满足为偶函数,且x=-2是函数的一个零点.又>0).
(1)求函数的解析式;
(2)若关于x 的方程上有解,求实数的取值范围;
(3)令,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义在上,对任意的,且.
(1)求,并证明:
(2)若单调,且.设向量,对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和,数列满足
(1)求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,求二十年发放的汽车牌照总量.



     
       
   

3
     
        
   
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司以每吨10万元的价格销售某种产品,每年可售出该产品1000吨,若将该产品每吨的价格上涨x%,则每年的销售数量将减少,该产品每吨的价格上涨百分之几,可使销售的总金额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为米,钢筋网的总长度为米.

(1)列出的函数关系式,并写出其定义域;
(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?
(3)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地方政府在某地建一座桥,两端的桥墩相距m米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩).经预测,一个桥墩的费用为256万元,相邻两个桥墩之间的距离均为x,且相邻两个桥墩之间的桥面工程费用为(1+)x万元,假设所有桥墩都视为点且不考虑其他因素,记工程总费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=1280米时,需要新建多少个桥墩才能使y最小?

查看答案和解析>>

同步练习册答案