精英家教网 > 高中数学 > 题目详情

某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为米,钢筋网的总长度为米.

(1)列出的函数关系式,并写出其定义域;
(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?
(3)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?

(1)
(2)长为30米,宽为15米,所用的钢筋网的总长度最小.
(3)长为25米,宽为18米时,所用的钢筋网的总长度最小

解析试题分析:(1)根据矩形的面积求出解析式,注意函数的定义域
(2)利用基本不等式求解,注意等号成立的条件
(3)利用函数的单调性求解(导数或单调性定义)
试题解析:(1)矩形的宽为:

定义域为
注:定义域为不扣分
(2) 
当且仅当 即时取等号,此时宽为:
所以,长为30米,宽为15米,所用的钢筋网的总长度最小.
(3)法一:

时,
 上是单调递减函数
时,,此时,长为25米,宽为
所以,长为25米,宽为18米时,所用的钢筋网的总长度最小.
法二:设
  


上是单调递减函数
时,
此时,长为25米,宽为
所以,长为25米,宽为18米时,所用的钢筋网的总长度最小.
考点:基本不等式的应用,函数的单调性,最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=3x.
(1)若f(x)=2,求x的值;
(2)判断x>0时,f(x)的单调性;
(3)若3tf(2t)+mf(t)≥0对于t∈恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的取值范围,使在闭区间上是单调函数;
(2)当时,函数的最大值是关于的函数.求
(3)求实数的取值范围,使得对任意的,恒有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足
()百米,百米.

(1)试将表示成的函数,并求出函数的解析式;
(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)设是定义在上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象关于坐标原点对称。
(1)求的值,并求出函数的零点;
(2)若函数在[0,1]内存在零点,求实数b的取值范围;
(3)设,已知的反函数=,若不等式上恒成立,求满足条件的最小整数k的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若对于区间内的任意,总有成立,求实数的取值范围;
(2)若函数在区间内有两个不同的零点,求:
①实数的取值范围; ②的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N),前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系式;
(2)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-4,设曲线yf(x)在点(xnf(xn))
处的切线与x轴的交点为(xn+1,0)(n∈N),其中x1为正实数.
(1)用xn表示xn+1
(2)求证:对一切正整数nxn+1xn的充要条件是x1≥2;
(3)若x1=4,记an=lg ,证明数列{an}成等比数列,并求数列{xn}的通项公式.

查看答案和解析>>

同步练习册答案