【题目】已知动圆
与定圆
:
外切,且与
轴相切.
![]()
(1)求动圆圆心
的轨迹
的方程;
(2)过
作直线
与
在
轴右侧的部分相交于
,
两点,点
关于
轴的对称点为
.
(ⅰ)求直线
与
轴的交点
的坐标;
(ⅱ)若
,求
的内切圆方程.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的方程为
.
(1)以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,求曲线
的极坐标方程和直线
的极坐标方程;
(2)在(1)的条件下,直线
的极坐标方程为
,设曲线
与直线
的交于点
和点
,曲线
与直线
的交于点
和点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(2x
)+2sin(
)sin(
x).
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求函数y=f(x)的对称轴方程,并求函数f(x)在区间[
,
]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点P(3,﹣4)作圆(x﹣1)2+y2=2的切线,切点分别为A,B,则直线AB的方程为( )
A.x+2y﹣2=0B.x﹣2y﹣1=0C.x﹣2y﹣2=0D.x+2y+2=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数),
是
的导函数.
(Ⅰ)当
时,求证
;
(Ⅱ)是否存在正整数
,使得
对一切
恒成立?若存在,求出
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数
在平面直角坐标系
中,已知点
直线
曲线
与
轴交于点A与
交于点
分别是曲线
与线段AB上的动点.
(1)用
表示点B到点F的距离;
(2)若
且
求
的值;
(3)设
且存在点P、Q,使得
是等边三角形,求
的边长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com