精英家教网 > 高中数学 > 题目详情
14.已知函数y=f(x)恒满足f(x+2)=f(x),且当x∈[-1,1]时,f(x)=2|x|-1,则函数g(x)=f(x)-|lgx|在R上的零点的个数是8.

分析 作出f(x)与y=|lgx|的函数图象,根据函数图象的交点个数得出答案.

解答 解:∵f(x+2)=f(x),∴f(x)的周期为2,
令g(x)=0得f(x)=|lgx|,
作出y=f(x)与y=|lgx|的函数图象如图所示:

由图象可知f(x)与y=|lgx|在(0,1)上必有1解,
又f(x)的最小值为$\frac{1}{2}$,f(x)的最大值为1,
∵lg2<lg$\sqrt{10}$=$\frac{1}{2}$,lg4>lg$\sqrt{10}$=$\frac{1}{2}$,lg9<1,lg11>1,
∴f(x)与y=|lgx|在(10,+∞)上没有交点,
结合图象可知f(x)与y=|lgx|共有8个交点,
∴g(x)共有8个零点.
故答案为:8.

点评 本题考查了函数零点与图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两个不共线的向量,$\overrightarrow{a}$=-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-3$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,试用$\overrightarrow{b}$,$\overrightarrow{c}$为基底表示向量$\overrightarrow{a}$;
(2)已知向量$\overrightarrow{m}$=(3,2),$\overrightarrow{n}$=(-1,2),$\overrightarrow{p}$=(4,1),当k为何值时,($\overrightarrow{m}$+k$\overrightarrow{p}$)∥(2$\overrightarrow{n}$-$\overrightarrow{m}$)?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为B1C1的中点.
(1)求证:平面B1A1C⊥平面EA1C;
(2)求二面角E-A1C-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知不等式ax2+bx-1<0的解集为{x|-1<x<2}.
(1)计算a、b的值;
(2)求解不等式x2-ax+b>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\sqrt{5}$,则其渐近线方程为(  )
A.$y=±\frac{1}{2}x$B.y=±2xC.$y=±\frac{{\sqrt{6}}}{6}x$D.$y=±\sqrt{6}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c.
(1)求证:sin3B=3sinB-4sin3B;
(2)若A=2B,b=3c,求sin(B-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知(3-2x)2017=a0+a1(x-1)+a2(x-1)2+…+a2017(x-1)2017,则a1+2a2+3a3+…+2017a2017=(  )
A.1B.-1C.4034D.-4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司对应聘人员进行能力测试,测试成绩总分为150分.下面是30位应聘人员的测试成绩的测试成绩:64,116,82,93,102,82,104,67,93,118,70,95,119,106,83,72,95,106,72,119,122,95,86,74,131,76,88,108,97,123.
(1)求应聘人员的测试成绩的样本平均数$\overline x$(保留小数点后两位);
(2)根据以上数据完成下面茎叶图:
应聘人员的测试成绩
6
7
8
9
10
11
12
13
(3)由茎叶图可以认为,应聘人员的测试成绩Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2,其中s2=18.872,利用该正态分布,求P(76.40<Z<114.14).
附:若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,
                                          P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合﹛x∈Z|(x-2)(x2-3)=0﹜用列举法表示为(  )
A.﹛2,$\sqrt{3}$,-$\sqrt{3}$﹜B.﹛2,$\sqrt{3}$,﹜C.﹛2,-$\sqrt{3}$﹜D.﹛2﹜

查看答案和解析>>

同步练习册答案