精英家教网 > 高中数学 > 题目详情
f(x)=
4x
4x+2
,那么f(
1
100
)+f(
2
100
)+f(
3
100
)+…+f(
99
100
)
的值等于
 
考点:函数的值
专题:函数的性质及应用
分析:利用函数表达式,求f(x)+f(1-x)为定值即可求解.
解答: 解:∵f(x)=
4x
4x+2

∴f(x)+f(1-x)=
4x
4x+2
+
41-x
41-x+2
=
4x
4x+2
+
4
4+2•4x
=
4x
4x+2
+
2
2+4x
=
4x+2
4x+2
=1

f(
1
100
)+f(
2
100
)+f(
3
100
)+…+f(
99
100
)
=55(f(
1
100
)+f(
99
100
)
)=55.
故答案为:55.
点评:本题主要主要考查指数幂的运算,利用条件求出f(x)+f(1-x)=1是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,若△ABC的三边长分别为|a|,|b|,|c|,则该三角形为
 
(判断三角形的形状).

查看答案和解析>>

科目:高中数学 来源: 题型:

在可行域内任取一点,其规则如流程图所示,则能输出数对(x,y)的概率是(  )
A、
π
8
B、
π
4
C、
π
6
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(2+lga)x+lgb,f(-1)=-2当x∈R时,f(x)≥2x恒成立.
(1)求实数a,b的值.
(2)当函数f(x)的定义域为[t,t+1](t<0)时,求函数f(x)的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=0.44,b=40.4,c=log20.4,则a,b,c的大小关系为
 
(用“>”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,U是全集,M、P是U的子集,则阴影部分所表示的集合是(  )
A、M∩(∁UP)
B、M∩P
C、(∁UM)∩P
D、(∁UM)∩(∁UP)

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在极坐标系中,已知圆C的方程是ρ=4,直线l的方程是ρsin(θ+
π
6
)=3,求圆C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是一个几何体的三视图,则该几何体的体积为(  )
A、1
B、
1
2
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程cos2x+(4t+2)sinx=2t2+2t+1  x∈[0,
2
]
,恰好有三个不等实根,则实数t的取值范围是(  )
A、-1≤t≤0
B、-1<t≤0
C、0≤t≤1
D、0<t≤1

查看答案和解析>>

同步练习册答案