【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点. ![]()
(1)求证:PD⊥平面ABE;
(2)若F为AB中点,
,试确定λ的值,使二面角P﹣FM﹣B的余弦值为
.
【答案】
(1)证明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,
又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,
∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE
(2)解:以A为原点,以
为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,
![]()
则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),
,
,
,M(2λ,2λ,2﹣2λ)
设平面PFM的法向量
,
,即
, ![]()
设平面BFM的法向量
,
,
即
,
,解得 ![]()
【解析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II) 以A为原点,以
为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.
科目:高中数学 来源: 题型:
【题目】设点
,动圆
经过点
且和直线
相切,记动圆的圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设曲线
上一点
的横坐标为
,过
的直线交
于一点
,交
轴于点
,过点
作
的垂线交
于另一点
,若
是
的切线,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度
(单位:千克/年)是养殖密度
(单位:尾/立方米)的函数.当
不超过
尾/立方米时,
的值为
千克/年;当
时,
是
的一次函数,且当
时,
.
(
)当
时,求
关于
的函数的表达式.
(
)当养殖密度
为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数y=f(x)的解析式,并用“五点法作图”在给出的直角坐标系中画出函数y=f(x)在区间[0,π]上的图象; ![]()
(2)设α∈(0,π),f(
)=
,求sinα的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于f(x)=4sin
(x∈R),有下列命题
①由f(x1)=f(x2)=0可得x1-x2是π的整数倍;
②y=f(x)的表达式可改写成y=4cos
;
③y=f(x)图象关于
对称;
④y=f(x)图象关于x=-
对称.
其中正确命题的序号为________(将你认为正确的都填上)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.
(1)求比赛结束时A队的得分高于B队的得分的概率;
(2)求比赛结束时B队得分X的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com