精英家教网 > 高中数学 > 题目详情
6.式子-2C${\;}_{n}^{1}$+4C${\;}_{n}^{2}$+…+(-2)nC${\;}_{n}^{n}$等于(  )
A.3nB.3n-1C.(-1)n-1D.(-1)n

分析 根据 1-2C${\;}_{n}^{1}$+4C${\;}_{n}^{2}$+…+(-2)nC${\;}_{n}^{n}$=(-1)n,可得-2C${\;}_{n}^{1}$+4C${\;}_{n}^{2}$+…+(-2)nC${\;}_{n}^{n}$ 的值.

解答 解:∵1-2C${\;}_{n}^{1}$+4C${\;}_{n}^{2}$+…+(-2)nC${\;}_{n}^{n}$=(1-2)n=(-1)n
∴-2C${\;}_{n}^{1}$+4C${\;}_{n}^{2}$+…+(-2)nC${\;}_{n}^{n}$=(-1)n-1,
故选:C.

点评 本题主要考查二项式定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值为(  )
A.0,1B.1,2C.0,1,2D.0,1,2,3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=2
(1)求tan2α的值;
(2)求sin2α+sinα cosα-2cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-3x+2≤0},集合B为函数y=x2-2x+a的值域,集合C={x|(x-a)[x-(a+4)≤0]}.
(1)若A∩B=∅,求实数a的取值范围;
(2)若A∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.辛集中学高二学生要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.恰有两个区域用红色鲜花的概率(  )
A.$\frac{8}{35}$B.$\frac{6}{35}$C.$\frac{4}{35}$D.$\frac{2}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不论a为何实数,直线ax+y+1=0与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1总有公共点,则实数m的取值范围是[1,4)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列有如下性质:若数列{an}为等差数列,当bn=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$时,数列{bn}也是等差数列;类比上述性质,在正项等比数列{cn}中,当dn=$\root{n}{{c}_{1}{c}_{2}•…•{c}_{n}}$时,数列{dn}也是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A(-1,2),B(2,4),若直线x-ay+3=0与线段AB有公共点,则a的取值范围是[1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设M是由满足下列条件的函数f(x)构成的集合:“①f(x)的定义域为R;②方程f(x)-x=0有实数根;③函数f(x)的导数f′(x)满足0<f′(x)<1”.
(1)判断函数f(x)=$\frac{x}{2}$+$\frac{sinx}{4}$是否是集合M中的元素,并说明理由;
(2)证明:方程f(x)-x=0只有一个实数根;
(3)证明:对于任意的x1,x2,x3,当|x2-x1|<1且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

同步练习册答案