分析 (1)运用正弦定理和同角的商数关系,由特殊角的三角函数值可得A;
(2)运用三角形的面积公式和余弦定理,解方程即可得到所求b,c的值.
解答 解:(1)在△ABC中,$\sqrt{3}$bcosA=asinB.
由正弦定理得$\sqrt{3}sinBcosA=sinAsinB$,
∴$tanA=\sqrt{3}$,又0<A<π,
∴$A=\frac{π}{3}$.
(2)由S△ABC=9$\sqrt{3}$,得$\frac{1}{2}$bcsin$\frac{π}{3}$=9$\sqrt{3}$,即为bc=36,
由余弦定理可得a2=b2+c2-2bccosA=(b+c)2-2bc-2bccos$\frac{π}{3}$,
即36=(b+c)2-3bc=(b+c)2-108,
解得b+c=12,
由$\left\{\begin{array}{l}bc=36\\ b+c=12\end{array}\right.$得$\left\{\begin{array}{l}b=6\\ c=6\end{array}\right.$,
∴三角形边b,c的长都为6.
点评 本题考查三角形的正弦定理和余弦定理、面积公式的运用,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 4 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}<\frac{1}{b}$ | B. | $\frac{a}{b}>1$ | C. | $a+b>2\sqrt{ab}$ | D. | 2a>2b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 等腰三角形 | ||
| C. | 等腰或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com