精英家教网 > 高中数学 > 题目详情

【题目】已知矩形,将沿矩形的对角线所在的直线进行翻折,在翻折过程中,则( ).

A. 时,存在某个位置,使得

B. 时,存在某个位置,使得

C. 时,存在某个位置,使得

D. 时,都不存在某个位置,使得

【答案】C

【解析】

∴若存在某个位置,使得直线,则平面,则,在中,,则由直角边小于斜边可知,,即,结合选项可知只有选项时,存在某个位置,使得故选

【方法点晴】本题主要考查翻折问题、线面垂直与线线垂直转换的应用以及空间想象能力,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理,本题中,先根据线线垂直得到线面垂直,在根据线面垂直得到线线垂直,从而得到进而得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线与的交点的轨迹为曲线,若,且是曲线上不同的点,满足,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点均在半径为2的球面上,且满足,则三棱锥的侧面积的最大值为(

A. 2 B. 4 C. 8 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的参数方程是 (θ为参数),曲线C与l的交点的极坐标为(2, )和(2, ),
(1)求直线l的普通方程;
(2)设P点为曲线C上的任意一点,求P点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设是首项为1,公比为的等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)右顶点与右焦点的距离为 ﹣1,短轴长为2
(1)求椭圆的方程;
(2)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|3x﹣1|+ax+3.
(1)若a=1,解不等式f(x)≤5;
(2)若函数f(x)有最小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生会为了了解学生对于“趣味运动会”的满意程度,从高一、高二两个年级分别随机调查了20个学生,得到学生对“趣味运动会”所设项目的满意度评分如下:
高一:62 7381 92 9585 74 6453 76
7886 95 6697 78 8882 76 89
高二:73 8362 51 9146 53 7364 82
9348 65 8174 56 5476 65 79
(1)根据两组数据完成两个年级满意度评分的茎叶图,并通过茎叶图比较两个年级满意度评分的平均值及离散程度(不要求计算出具体值,给出结论即可);

高一

高二

4

3

5

6

4

2

6

6

8

8

6

4

3

7

9

2

8

6

5

1

8

7

5

5

2

9


(2)根据学生满意度评分,将学生的满意度从低到高分为三个等级:

满意度评分

低于70分

70分到89分

不低于90分

满意度等级

不满意

满意

非常满意

假设两个年级的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率.随机调查高一、高二各一名学生,记事件A:“高一、高二学生都非常满意”,事件B:“高一的满意度等级高于高二的满意度等级”.分别求事件A、事件B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线的焦点为,准线与轴的交点为,过点的直线,抛物线相交于不同的两点.

(1)若,求直线的方程;

(2)若点在以为直径的圆外部,求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案