精英家教网 > 高中数学 > 题目详情

【题目】椭圆短轴的左右两个端点分别为A,B,直线与x轴、y轴分别交于两点E,F,交椭圆于两点C,D.

(1)若,求直线的方程;

(2)设直线AD,CB的斜率分别为,若,求k的值.

【答案】(1);(2).

【解析】

试题分析:(1)联立直线方程与椭圆方程,消去未知数得到关于的方程为:显然成立,设,于是可以得出,根据直线求得,于是根据有:,就可以求出的值;(2),所以,则平方有(*),又因为,代入(*)得:,于是整理可得:,整理后得到关于的表达式,即得到关于的表达式,于是可以求出值.

试题解析:(I)设

由已知

所以

所以

符合题意,

所以,所求直线l的方程为

(II)

所以

平方得

代入上式,

计算得

所以

因为

所以k=3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率为是椭圆的焦点,直线的斜率为为坐标原点.

()的方程;

)设过点的直线相交于两点,当的面积最大时,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1处取得极小值,求的值;

2上恒成立,求的取值范围;

3求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知过点的直线的参数方程是为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.

)求直线的普通方程和曲线的直角坐标方程;

)若直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为坐标原点,其离心率为,椭圆的一个焦点和抛物线的焦点重合.

(1)求椭圆的方程

(2)过点的动直线交椭圆两点,试问:在平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点,若存在,说出点的坐标若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位数学老师组队参加某电视台闯关节目,共3关,甲作为嘉宾参与答题,若甲回答错误,乙作为亲友团在整个通关过程中至多只能为甲提供一次帮助机会,若乙回答正确,则甲继续闯关,若某一关通不过,则收获前面所有累积奖金.约定每关通过得到奖金2000元,设甲每关通过的概率为,乙每关通过的概率为,且各关是否通过及甲、乙回答正确与否均相互独立.

1求甲、乙获得2000元奖金的概率;

2表示甲、乙两人获得的奖金数,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|ax-x2|+2b(abR).

(1)b=0若不等式f(x)2xx[02]上恒成立求实数a的取值范围;

(2)已知a为常数且函数f(x)在区间[02]上存在零点求实数b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

14551495

1

002

14951535

4

008

15351575

20

040

15751615

15

030

16151655

8

016

16551695

m

n

合 计

M

N

1)求出表中所表示的数分别是多少?

2)画出频率分布直方图.

3)全体女生中身高在哪组范围内的人数最多?由直方图确定此组数据中位数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数

1讨论的单调性;

2证明:当时,

3确定的所有可能取值,使得区间内恒成立

查看答案和解析>>

同步练习册答案