精英家教网 > 高中数学 > 题目详情

已知动圆为圆心)经过点,并且与圆相切.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)经过点的直线与曲线相交于点,并且,求直线的方程.

练习册系列答案
相关习题

科目:高中数学 来源:2017届湖北省百所重点校高三联合考试数学(文)试卷(解析版) 题型:解答题

已知集合,集合

(1)若,求实数的取值范围;

(2)是否存在实数,使?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2017届河北沧州市高三9月联考数学(文)试卷(解析版) 题型:解答题

已知

(Ⅰ)讨论的单调性;

(Ⅱ)当时,记,已知有三个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届河北沧州市高三9月联考数学(文)试卷(解析版) 题型:选择题

正方体的顶点都在同一球面上,且此球体积为,则正方体的体积为( )

A. B. C.8 D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得的图象向右平移$\frac{π}{2}$个单位长度.
(1)求函数f(x)的解析式,并求其图象的对称轴方程;
(2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β.
①求实数m的取值范围;
②请用m的式子表示cos(α-β).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了了解某工业园中员工的颈椎疾病与工作性质是否有关,在工业园内随机的对其中50名工作人员是否患有颈椎疾病进行了抽样调查,得到如下的列联表.
患有颈椎疾病没有患颈椎疾病合计
白领5
蓝领10
合计50
已知在全部50人中随机抽取1人,抽到患有颈椎疾病的人的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患颈椎疾病与工作性质有关?说明你的理由;
(2)已知在患有颈椎疾病的10名蓝领中,有3位工龄在15年以上,现在从患有颈椎疾病的10名蓝领中,选出3人进行工龄的调查,记选出工龄在15年以上的人数为ξ,求ξ的分布列及数学期望.
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足:${a_1}∈{N^+},{a_1}≤36$,且${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤18\\ 2{a_n}-36,{a_n}>18\end{array}\right.({n=1,2,…})$,记集合$M=\left\{{{a_n}|n∈{N^+}}\right\}$
(1)若a1=6,写出集合M的所有元素;
(2)求集合M的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$x3+(2a+1)x2+3a(a+2)x+1,a∈R.
(1)当a=0时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)当a=-1时,求函数y=f(x)在[0,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算cos$\frac{11π}{3}$+tan(-$\frac{3}{4}$π)=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案