精英家教网 > 高中数学 > 题目详情

【题目】下列给出四组函数,表示同一函数的是(
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=|x|,g(x)=
D.f(x)=1,g(x)=x0

【答案】C
【解析】解:对于A:f(x)=x﹣1,其定义域为R,而g(x)= ﹣1的定义域为{x|x≠0},定义域不同,∴不是同一函数;
对于B:f(x)=2x+1,g(x)=2x﹣1它们的定义域为R,但对应关系不相同,∴不是同一函数;
对于C:f(x)=|x|,其定义域为R,g(x)= =|x|的定义域为R,它们的定义域相同,对应关系也相同,∴是同一函数;
对于D:f(x)=1其定义域为R,而g(x)=x0的定义域为{x|x≠0},定义域不同,∴不是同一函数;
故选C.
根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料、五合板;生产每个书橱需要方木枓、五合板.出售一张书桌可获利润元,出售一个书橱可获利润元,怎样安排生产可使所得利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),当x>1时,有f(x)>0.
(1)求f(1),判定并证明f(x)的单调性;
(2)若f(2)=1,解不等式f(﹣x)+f(3﹣x)≥﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+1,a,b∈R,当x=﹣1时,函数f(x)取到最小值,且最小值为0;
(1)求f(x)解析式;
(2)关于x的方程f(x)=|x+1|﹣k+3恰有两个不相等的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.

(1)求这次行车总费用y关于x的表达式;

(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计) 即为中奖.

乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.

问:购买该商品的顾客在哪家商场中奖的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.65.0之间的学生数为b,则ab的值分别为 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,,且成等比数列.

(1)求数列的通项;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则xf(x)<0的解集为(
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或0<x<3}
C.{x|﹣3<x<0或0<x<3}
D.{x|x<﹣3或x>3}

查看答案和解析>>

同步练习册答案