精英家教网 > 高中数学 > 题目详情
12.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=axg(x)(a>0,a≠1),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,则实数a的值为2.

分析 先根据题意设h(x)=$\frac{f(x)}{g(x)}$=ax,再求出其导数结合f′(x)g(x)>f(x)g′(x),判断出函数是增函数,然后根据$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$求出a的数值即可得到答案.

解答 解:根据题意可得:g(x)≠0,所以设h(x)=$\frac{f(x)}{g(x)}$=ax
则h′(x)=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$=axlna
因为f′(x)g(x)>f(x)g′(x),
所以h′(x)>0,
所以函数h(x)是定义在R上的增函数.
又因为$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,
所以a+$\frac{1}{a}$=$\frac{5}{2}$
即2a2-5a+2=0,
所以a=2或a=$\frac{1}{2}$,
所以a=2.
故答案为2.

点评 本题考查导数的运算、导数与函数的单调性,考查学生灵活解决问题的能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,在平行四边形ABCD中,AB=BD=DC=1,AD=BC=$\sqrt{2}$,将平行四边形ABCD沿对角线BD折成三棱锥A′-BCD,使平面A′BD⊥平面BCD,在下列结论中:
①直线CD⊥平面A′BD;
②平面A′BC⊥平面BCD;
③点B到平面A'CD的距离为$\frac{{\sqrt{2}}}{4}$;
④棱A′C上存在一点到顶点A'、B、C、D的距离相等.
所有正确结论的编号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-4x-6y+9=0及直线l:2mx-3my+x-y-1=0(m∈R)
(1)证明:不论m取何值,直线l与圆C恒相交;
(2)求直线l被圆C截得的弦长最短时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆的左右焦点分别为$(-\sqrt{2},0),(\sqrt{2},0)$,点$A(\sqrt{2},\frac{{\sqrt{3}}}{3})$在椭圆C上,直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P
(1)求椭圆C的方程
(2)若圆P与x轴相切,求圆心P的坐标
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,长宽高分别为a、b、c的长方体的六条面对角线组成等腰四面体ABCD.
(1)求证等腰四面体ABCD的每个面都是锐角三角形;
(2)求等腰四面体的体积及其外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)化下列曲线的极坐标方程为直角坐标方程:①ρ=4sinθ②ρ2cos2θ=16
(2)直线方程2x-y+7=0化为极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l1的参数方程$\left\{\begin{array}{l}{x=2+\sqrt{2}t}\\{y=1+\sqrt{2}t}\end{array}\right.$(t是参数),直线l2的极坐标方程为ρ(cosθ+sinθ)=2,则l1与l2的夹角是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.集合{1,2,3,…,n}(n≥3)中,每两个相异数作乘积,将所有这些乘积的和记为Tn,如:${T_3}=1×2+1×3+2×3=\frac{1}{2}[{6^2}-({1^2}+{2^2}+{3^2})]=11$;${T_4}=1×2+1×3+1×4+2×3+2×4+3×4=\frac{1}{2}[{10^2}-({1^2}+{2^2}+{3^2}+{4^2})]=35$;${T_5}=1×2+1×3+1×4+1×5+…+3×5+4×5=\frac{1}{2}[{15^2}-({1^2}+{2^2}+{3^2}+{4^2}+{5^2})]=85$
则T8=546.(写出计算结果)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)>f′(x)对于x∈R恒成立(e为自然对数的底),则(  )
A.e2015•f(2016)>e2016•f(2015)
B.e2016•f(2016)=e2016•f(2015)
C.e2015•f(2016)<e2016•f(2015)
D.e2015•f(2016)与e2016•f(2015)大小不确定

查看答案和解析>>

同步练习册答案