精英家教网 > 高中数学 > 题目详情
16.已知△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=(cosB,2{cos^2}\frac{C}{2}-1)$,$\overrightarrow n=(c,b-2a)$且$\overrightarrow m•\overrightarrow n=0$.
(1)求角C的大小;
(2)若△ABC的面积为$2\sqrt{3}$,a+b=6,求c.

分析 (1)由已知利用平面向量数量积,三角函数恒等变换的应用化简可得sinA=2sinAcosC,由sinA≠0,可求$cosC=\frac{1}{2}$,结合范围C∈(0,π),可求C的值.
(2)利用三角形面积公式可求ab=8,进而利用余弦定理可求c的值.

解答 解:(1)∵由已知可得:$\overrightarrow m=(cosB,cosC)$,$\overrightarrow n=(c,b-2a)$,$\overrightarrow m•\overrightarrow n=0$,
∴ccosB+(b-2a)cosC=0,
∴sinCcosB+(sinB-2sinA)cosC=0,即sinA=2sinAcosC,
又∵sinA≠0,
∴$cosC=\frac{1}{2}$,
又∵C∈(0,π),
∴$C=\frac{π}{3}$.
(2)∵${S_{△ABC}}=\frac{1}{2}absinC=2\sqrt{3}$,
∴ab=8,
又c2=a2+b2-2abcosC,即(a+b)2-3ab=c2
∴c2=12,
故$c=2\sqrt{3}$.

点评 本题主要考查了平面向量数量积,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(∁UA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上周期为4的奇函数,当0<x<2时,f(x)=log2x,则f(2)+f($\frac{7}{2}$)=(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{1}{e}•{e^x}+\frac{a}{2}{x^2}$-(a+1)x+a(a>0),其中e为自然对数的底数.若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的最大值为(  )
A.eB.2C.1D.$\frac{e}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知曲线f(x)=2x2+1在点M(x0,y0)处的瞬时变化率为-8,则点M的坐标为(-2,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-1,0,1,2},集合B={y|y=2x-3,x∈A},则A∩B中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=a(x-1).
(Ⅰ)当a=1时,解不等式|f(x)|+|f(-x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证:$|f({x^2})+x|≤\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{{\sqrt{2}}}{2}$,同时椭圆C上存在一点与右焦点关于直线x+y-1=0对称,则椭圆C的方程为(  )
A.$\frac{{8{x^2}}}{9}+\frac{{16{y^2}}}{9}=1$B.$\frac{{9{x^2}}}{8}+\frac{{16{y^2}}}{9}=1$C.$\frac{{8{x^2}}}{9}+\frac{{9{y^2}}}{16}=1$D.$\frac{{9{x^2}}}{8}+\frac{{9{y^2}}}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆心在x轴上,半径为2,且过点(1,2)的圆的方程为(  )
A.(x-1)2+y2=4B.(x-2)2+y2=4C.x2+(y-1)2=4D.(x-1)2+(y-4)2=4

查看答案和解析>>

同步练习册答案