精英家教网 > 高中数学 > 题目详情
在△ABC中,若tanAtanC+tanBtanC=tanAtanB,且a2+b2=mc2,则实数m等于
3
3
分析:由已知的等式通过切化弦,可得
sinAsinB
sinC
=
sin(A+B)
cosC
,即
sinAsinBcosC
sin2C
=1,即
abcosC
c2
=1
,由余弦定理求出cosC代入化简,即可求出m的值.
解答:解:已知等式即 
sinAsinC
cosAcosC
+
sinBsinC
cosBcosC
=
sinAsinB
cosAcosB

sinAsinCcosB+cosAsinBsinC
cosAcosBcosC
=
sinAsinB
cosAcosB

sinC(sinAcosB+cosAsinB)
cosAcosBcosC
=
sinAsinB
cosAcosB

可得
sinAsinB
sinC
=
sin(A+B)
cosC

sinAsinBcosC
sin2C
=1,
abcosC
c2
=1
. 所以
a2+b2-c2
2c2
=1

故a2+b2=3c2
∴m=3
故答案为:3.
点评:本题考查正弦定理,余弦定理的应用,同角三角函数的基本关系,把角的关系转化为边的关系,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若tanA+tanB+tanC=1,则tanAtanBtanC=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-
1
2
,则cosA=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-2,则cosA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取得的点到O距离大小1的概率为1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形,其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=2tanB=3tanC,则cosA的值为
 

查看答案和解析>>

同步练习册答案