精英家教网 > 高中数学 > 题目详情

 如图,在三棱柱ABCA1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,ABBCCB=3,AB=4,∠A1AB=60°。

(1)求证:平面CA1B⊥平面A1ABB1;      

 

 
(2)求直线A1C与平面BCC1B所成角的正切值;

(3)求点C1到平面A1CB的距离。

A1

 

B1

 

 

 


C1

 

   

 

B

 

A

 

C

 

 

 

 

 

 

【答案】

 (1)证:因为四边形BCC1B1是矩形,∴BC⊥BB1,又∵AB⊥BC,∴BC⊥平面A1ABB1。∵BC平面CA1B,∴平面CA1B⊥平面A1ABB1

(2)解:过A1作A1D⊥B1B于D,连接DC,∵BC⊥平面A1ABB1

∴BC⊥A1D,∴A1D⊥平面BCC1B1,故∠A1CD为直线A1C与平面BCC1B1所成的角。∵CB=3,AB=4,∴A1D=,∴tan∠A1CD=

(3)∵B1C1∥BC1,∴B1C1∥平面A1BC,∴C­1到平面A1BC的距离即为B1到平面A1BC的距离。连结AB1,AB­1与A1B交于点O,∵四边形A1ABB1是菱形,∴B1O⊥A1B,∵CA1B⊥平面A1ABB1,∴B1O⊥平面A1BC,∴B1O即为C1到平面A1BC的距离。∵B1O=,∴C1到平面A1BC的距离为。   

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案