精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=-8,它的前16项的平均值为7,若从中抽取一项,余下的15项的平均值是
36
5
,则抽取的是(  )
A、第7项B、第8项
C、第15项D、第16项
考点:等差数列的性质
专题:等差数列与等比数列
分析:易得抽取的项为4,由求和公式可得公差d=2,再由通项公式易得答案.
解答: 解:由题意可得抽取的项为16×7-15×
36
5
=4,
设等差数列{an}的公差为d,则数列的前16项和
S16=-8×16+
16×15
2
d=16×7,解得d=2,
设4为数列的第n项,则-8+2(n-1)=4,解得n=7
故选:A
点评:本题考查等差数列的通项公式和求和公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面是边长为2的菱形,∠BAD=60°,PA=PD=3,PD⊥CD.E为AB中点.
(Ⅰ)证明:PE⊥CD;
(Ⅱ)求二面角C-PE-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:an+2=3an+1-2an,a1=2,a2=4,n∈N*
(Ⅰ)求证:数列{an+1-an}为等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=an(an+1),{bn}的前n项和记为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的一块木料中,棱BC平行于面A′C′.
(Ⅰ)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(写出画法步骤,并在图中画出)
(Ⅱ)说明所画的线与平面AC的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个焦点为F(0,1),离心率e=
1
2
,则该椭圆的标准程为(  )
A、
x2
3
+
y2
4
=1
B、
x2
4
+
y2
3
=1
C、
x2
2
+y2=1
D、x2+
y2
2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B为椭圆
x2
16
+
y2
9
=1上任意两点,O为坐标原点,则“OA⊥OB”是“O到直线AB的距离为
12
5
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上顶点到焦点的距离为2,离心率为
3
2

(1)求椭圆C的方程;
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.若|PA|2+|PB|2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(7π+α)=-2.
(1)求
cos2α-2sin2α
sin2α+3cos2α
的值;
(2)若α是第二象限角,求
sin(π-α)cos(
π
2
+α)-tan(3π+α)
sin(4π-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l1的极坐标方程为θ=
π
4
,与直线l2
x=2t
y=t+1
的交点为A,曲线C:
x=2
2
cosα
y=2
2
sinα

(Ⅰ)求A的极坐标;
(Ⅱ)求C过点A的切线的极坐标方程.

查看答案和解析>>

同步练习册答案