£¨2011•˳ÒåÇø¶þÄ££©ÒÑÖªÍÖÔ²CµÄ×ó£¬ÓÒ½¹µã×ø±ê·Ö±ðΪF1(-
3
£¬0)£¬F2(
3
£¬0)
£¬ÀëÐÄÂÊÊÇ
3
2
£®ÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã·Ö±ð¼ÇΪA£¬B£®µãSÊÇÍÖÔ²CÉÏλÓÚxÖáÉÏ·½µÄ¶¯µã£¬Ö±ÏßAS£¬BSÓëÖ±Ïßl£ºx=-
10
3
·Ö±ð½»ÓÚM£¬NÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóÏß¶ÎMN³¤¶ÈµÄ×îСֵ£»
£¨3£©µ±Ïß¶ÎMNµÄ³¤¶È×îСʱ£¬ÔÚÍÖÔ²CÉϵÄTÂú×㣺Tµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
2
4
£¬ÊÔÈ·¶¨µãTµÄ¸öÊý£®
·ÖÎö£º£¨1£©ÒòΪ
c
a
=
3
2
£¬ÇÒc=
3
£¬ËùÒÔa=2£¬b=
a2-c2
=1
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2 £©ÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã×ø±êΪA£¨-2£¬0£©£¬B£¨2£¬0£©£¬ÉèÖ±ÏßASµÄ·½³ÌΪy=k£¨x+2£©£¬´Ó¶øM(-
10
3
£¬-
4
3
k)

ÓÉ
y=k(x+2)
x2
4
+y2=1
£¬µÃ£¨1+4k2£©x2+16k2x+16k2-4=0£¬ÓÉ´ËÈëÊÖÄܹ»Çó³öÏß¶ÎMNµÄ³¤¶ÈµÄ×îСֵ£®
£¨3£©ÓÉ£¨2£©Öª£¬µ±Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵʱ£¬k=1£¬´ËʱASµÄ·½³ÌΪx-y+2=0£¬S(-
6
5
£¬
4
5
)
£¬ÒòΪµãTµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
2
4
£¬ËùÒÔµãTÔÚÆ½ÐÐÓÚASÇÒÓëAS¾àÀëµÈÓÚ
2
4
µÄÖ±Ïßl¡äÉÏ£®Éèl¡ä£ºx-y+t=0£¬ÔòÓÉ
|t-2|
2
=
2
4
£¬½âµÃt=
3
2
»òt=
5
2
£®ÓÉ´ËÈëÊÖÄÜÇó³öËùÇóµãTµÄ¸öÊý£®
½â´ð£º½â£º£¨1£©ÒòΪ
c
a
=
3
2
£¬ÇÒc=
3
£¬ËùÒÔa=2£¬b=
a2-c2
=1

ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
x2
4
+y2=1
¡­£®£¨3·Ö£©
£¨2 £© Ò×ÖªÍÖÔ²CµÄ×ó£¬ÓÒ¶¥µã×ø±êΪA£¨-2£¬0£©£¬B£¨2£¬0£©£¬Ö±ÏßASµÄбÂÊkÏÔÈ»´æÔÚ£¬ÇÒk£¾0
¹Ê¿ÉÉèÖ±ÏßASµÄ·½³ÌΪy=k£¨x+2£©£¬´Ó¶øM(-
10
3
£¬-
4
3
k)

ÓÉ
y=k(x+2)
x2
4
+y2=1
£¬µÃ£¨1+4k2£©x2+16k2x+16k2-4=0
ÉèS£¨x1£¬y1£©£¬Ôò(-2)x1=
16k2-4
1+4k2
£¬µÃx1=
2-8k2
1+4k2

´Ó¶øy1=
4k
1+4k2
£¬¼´S(
2-8k2
1+4k2
£¬
4k
1+4k2
)
ÓÖB£¨2£¬0£©£¬¹ÊÖ±ÏßBSµÄ·½³ÌΪy=-
1
4k
(x-2)

ÓÉ
y=-
1
4k
(x-2)
x=-
10
3
µÃ
x=-
10
3
y¨T
4
3k
£¬ËùÒÔN(-
10
3
£¬
4
3k
)
¹Ê|MN|=|
4k
3
+
4
3k
|

ÓÖk£¾0£¬ËùÒÔ|MN|=
4k
3
+
4
3k
¡Ý2
4k
3
4
3k
=
8
3

µ±ÇÒ½öµ±
4k
3
=
4
3k
ʱ£¬¼´k=1ʱµÈºÅ³ÉÁ¢
ËùÒÔk=1ʱ£¬Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵ
8
3
¡­..£¨9·Ö£©
£¨3£©ÓÉ£¨2£©Öª£¬µ±Ïß¶ÎMNµÄ³¤¶ÈÈ¡×îСֵʱ£¬k=1
´ËʱASµÄ·½³ÌΪx-y+2=0£¬S(-
6
5
£¬
4
5
)
£¬
ÒòΪµãTµ½Ö±ÏßASµÄ¾àÀëµÈÓÚ
2
4
£¬
ËùÒÔµãTÔÚÆ½ÐÐÓÚASÇÒÓëAS¾àÀëµÈÓÚ
2
4
µÄÖ±Ïßl¡äÉÏ
Éèl¡ä£ºx-y+t=0£¬ÔòÓÉ
|t-2|
2
=
2
4
£¬½âµÃt=
3
2
»òt=
5
2

1µ±t=
3
2
2ʱ£¬ÓÉ
3
x2
4
+y2=1
4x-y+
3
2
=0
5
6µÃ5x2+12x+5=07
ÓÉÓÚ¡÷=44£¾0£¬¹ÊÖ±Ïßl¡äÓëÍÖÔ²CÓÐÁ½¸ö²»Í¬½»µã
¢Út=
5
2
ʱ£¬ÓÉ
x2
4
+y2=1
x-y+
5
2
=0
µÃ5x2+20x+21=0ÓÉÓÚ¡÷=-20£¼0£¬¹ÊÖ±Ïßl¡äÓëÍÖÔ²CûÓн»µã
×ÛÉÏËùÇóµãTµÄ¸öÊýÊÇ2£®¡­..£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬±¾Ìâ¾ßÌåÉæ¼°µ½¹ì¼£·½³ÌµÄÇ󷨼°Ö±ÏßÓëÍÖÔ²µÄÏà¹ØÖªÊ¶£¬½âÌâʱҪעÒâºÏÀíµØ½øÐеȼÛת»¯£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•˳ÒåÇø¶þÄ££©ÔÚ¡÷ABCÖУ¬Èôb=1£¬c=
3
£¬¡ÏA=
¦Ð
6
£¬Ôòa=
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•˳ÒåÇø¶þÄ££©ÒÑÖªº¯Êýf(x)=2-sin(2x+
¦Ð
6
)-2sin2x
£¬x¡ÊR
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©¼Ç¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß³¤·Ö±ðΪa£¬b£¬c£¬Èôf(
B
2
)=1£¬b=1£¬c=
3
£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•˳ÒåÇø¶þÄ££©ÒÑÖª¶¨ÒåÔÚÇø¼ä[0£¬
3¦Ð
2
]Éϵĺ¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=
3¦Ð
4
¶Ô³Æ£¬µ±x¡Ý
3¦Ð
4
ʱ£¬f£¨x£©=cosx£¬Èç¹û¹ØÓÚxµÄ·½³Ìf£¨x£©=aÓн⣬¼ÇËùÓнâµÄºÍΪS£¬ÔòS²»¿ÉÄÜΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•˳ÒåÇø¶þÄ££©Ä³Ã޷ij§ÎªÁ˽âÒ»ÅúÃÞ»¨µÄÖÊÁ¿£¬´ÓÖÐËæ»ú³é²â100¸ùÃÞ»¨ÏËάµÄ³¤¶È£¨ÃÞ»¨ÏËάµÄ³¤¶ÈÊÇÃÞ»¨ÖÊÁ¿µÄÖØÒªÖ¸±ê£©£®ËùµÃÊý¾Ý¾ùÔÚÇø¼ä[5£¬40]ÖУ¬ÆäƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬ÓÉͼÖÐÊý¾Ý¿ÉÖªa=
0.05
0.05
£¬ÔÚ³é²âµÄ100¸ùÖУ¬ÃÞ»¨ÏËάµÄ³¤¶ÈÔÚ[20£¬30]ÄÚµÄÓÐ
55
55
¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•˳ÒåÇø¶þÄ££©ÒÑÖª
e1
=(1£¬0)£¬
e2
=(0£¬1)
£¬
a
=2
e1
+
e2
£¬
b
=¦Ë
e1
-
e2
£¬µ±
a
¡Î
b
ʱ£¬ÊµÊý¦ËµÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸