精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:“方程x2﹣ax+a+3=0有解”,q:“ ﹣a≥0在[0,+∞)上恒成立”,若p或q为真命题,p且q为假命题,求实数a的取值范围.

【答案】解:命题p:方程x2﹣ax+a+3=0有解,可得,△=a2﹣4a﹣12≥0,解得a≤﹣2或a≥6. 命题q:“ ﹣a≥0在[0,+∞)上恒成立,a≤ ,设f(x)= ,因为f(x)在[0,+∞)为减函数,
所以f(x)>0,
解得a≤0.
∵p或q为真命题,p且q为假命题,
∴命题p与q一真一假,
当p真q假时, ,解得a≥6,
当p假q真时, ,解得﹣2<a≤0,
综上实数a的取值范围是(﹣2,0]∪[6,+∞)
【解析】命题p:方程x2﹣ax+a+3=0有解,可得△≥0,解得a的取值范围.命题q ﹣a≥0在[0,+∞)上恒成立,即a≤ ,解得a的取值范围.由于p或q为真命题,p且q为假命题,命题p与q一真一假,分别求出,即可得到a的取值范围
【考点精析】掌握复合命题的真假是解答本题的根本,需要知道“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=fx)图象上存在不同的两点AB关于y轴对称,则称点对[AB]是函数y=fx)的一对“黄金点对”(注:点对[AB][BA]可看作同一对“黄金点对”).已知函数fx=,则此函数的“黄金点对“有(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.

)求这两个班学生成绩的中位数及x的值;

)如果将这些成绩分为优秀(得分在175分 以上,包括175分)和过关,若学校再从这两个班获得优秀成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)的定义域为R,对任意,有>-1,且f(1)=1,下列命题正确的是(  )

A. 是单调递减函数

B. 是单调递增函数

C. 不等式的解集为

D. 不等式的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)的对称中心.研究函数f(x)=x+sinπx﹣3的某个对称中心,并利用对称中心的上述定义,可求得f( )+f( )+…+f( )+f( )的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入单位:千元与月储蓄单位:千元的数据资料,算得附:线性回归方程中,,其中为样本平均值.

求家庭的月储蓄y对月收入x的线性回归方程

判断变量xy之间是正相关还是负相关;

若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

1)应收集多少位女生的样本数据?

2)根据这300样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为: .估计该校学生每周平均体育运动时间超过4小时的概率;

3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为该校学生的每周平均体育运动时间与性别有关


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,且f(1)=3.
(1)求m的值;
(2)判断函数f(x)的奇偶性.

查看答案和解析>>

同步练习册答案