精英家教网 > 高中数学 > 题目详情
5.已知命题p:?x∈R,log3x≥0,则(  )
A.¬p:?x∈R,log3x≤0B.¬p:?x∈R,log3x≤0C.¬p:?x∈R,log3x<0D.¬p:?x∈R,log3x<0

分析 利用命题的否定即可判断出.

解答 解:命题p:?x∈R,log3x≥0,则¬p:?x∈R,log3x<0.
故选:C.

点评 本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A=$\left\{{\left.x\right|y=\sqrt{({1-x})({x+3})}}\right\},B=\left\{{\left.x\right|{{log}_2}x\;≤\;1}\right\}$,则A∩B=(  )
A.[-3,1]B.(0,1]C.[-3,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若△ABC面积为1,则$\overrightarrow{AB}$2+$\overrightarrow{AC}$2-$\overrightarrow{AB}$$•\overrightarrow{AC}$的最小值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某人设置一种游戏,其规则是掷一枚均匀的硬币4次为一局,每次掷到正面时赋值为1,掷到反面时赋值为0,将每一局所掷4次赋值的结果用(a,b,c,d)表示,其中a,b,c,d分别表示掷第一、第二、第三、第四次的赋值,并规定每局中“正面次数多于反面次数时获奖”.
(Ⅰ)写出每局所有可能的赋值结果;
(Ⅱ)求每局获奖的概率;
(Ⅲ)求每局结果满足条件“a+b+c+d≤2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设变量,y满足约束条件$\left\{\begin{array}{l}x+1≥0\\ x+2y-2≥0\\ 2x-y-2≤0\end{array}\right.$,则目标函数z=3x+4y的最小值为(  )
A.1B.3C.$\frac{26}{5}$D.-19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.摄像师要对已坐定一排照像的5位小朋友的座位顺序进行调整,要求其中恰有2人座位不调整,则不同的调整方案的种数为20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为60°,则向量$\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}$与$\overrightarrow{{e}_{2}}-2\overrightarrow{{e}_{1}}$的夹角为$\frac{2}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={1,m2},B={2,9},则“m=3”是“A∩B={9}”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中,含x3项的系数是64(用数字填写答案)

查看答案和解析>>

同步练习册答案