| A. | 1 | B. | 3 | C. | $\frac{26}{5}$ | D. | -19 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x+1≥0\\ x+2y-2≥0\\ 2x-y-2≤0\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=-1}\\{x+2y-2=0}\end{array}\right.$,解得A(-1,$\frac{3}{2}$),
化目标函数z=3x+4y为y=$-\frac{3}{4}x+\frac{z}{4}$,
由图可知,当直线y=$-\frac{3}{4}x+\frac{z}{4}$过点A时,直线在y轴上的截距最小,z有最小值为3,
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{10}$$\sqrt{2}$ | B. | -$\frac{7}{10}$$\sqrt{2}$ | C. | -$\frac{\sqrt{2}}{10}$ | D. | $\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | h(x)=f(x)+g(x) | B. | h(x)=f(x)•g(x) | C. | $h(x)=\frac{g(x)}{2-f(x)}$ | D. | $h(x)=\frac{f(x)}{2-g(x)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p:?x∈R,log3x≤0 | B. | ¬p:?x∈R,log3x≤0 | C. | ¬p:?x∈R,log3x<0 | D. | ¬p:?x∈R,log3x<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 甲 | 乙 | 原料限额 | |
| A(吨) | 3 | 2 | 12 |
| B(吨) | 1 | 2 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com