精英家教网 > 高中数学 > 题目详情

已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=a,AB中点到椭圆左准线的距离为,求该椭圆方程.

 

 

【答案】

解:设A(x1,y1),B(x2,y2),由焦半径公式有a-ex1+a-ex2=,∴x1+x2=,即AB中点横坐标为,又左准线方程为,∴,即a=1,∴椭圆方程为x2+y2=1.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上两点,且OA⊥OB(O为原点)
(1)求证:
1
|OA|2
+
1
|OB|2
为定值
(2)求△AOB面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B为椭圆C:
x2
m+1
+
y2
m
=1
的长轴的两个端点,P是椭圆C上的动点,且∠APB的最大值是
3
,则m=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B为椭圆
x2
4
+
y2
3
=1
的左右顶点,F为椭圆的右焦点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交直线l:x=m(m>2)于M、N两点,l交x轴于C点.
(Ⅰ)当PF∥l时,求直线AM的方程;
(Ⅱ)是否存在实数m,使得以MN为直径的圆过点F,若存在,求出实数m的值;,若不存在,请说明理由;
(Ⅲ)对任意给定的m值,求△MFN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B为椭圆
x2
m2
+
25y2
9m2
=1(m>0)上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=
8
5
m
(1)求椭圆的离心率e.
(2)若AB中点到椭圆左准线的距离为
3
2
,求该椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=
3
2
,且点P(-2,0)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A、B为椭圆C上的动点,当PA⊥PB时,求证:直线AB恒过一个定点.并求出该定点的坐标.

查看答案和解析>>

同步练习册答案