精英家教网 > 高中数学 > 题目详情
若方程
x2
n-2
+
y2
n+3
=1
表示焦点在y轴上的双曲线,则n的取值范围(  )
A.n>2B.n<-3C.-3<n<2D.n<-3或n>2
∵方程
x2
n-2
+
y2
n+3
=1表示焦点在y轴上的双曲线,
n+3>0
n-2<0
,解得-3<n<2.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

以双曲线
x2
9
-
y2
16
=1的右焦点为圆心,且与两条渐近线相切的圆的方程是(  )
A.(x+5)2+y2=9B.(x+5)2+y2=16C.(x-5)2+y2=9D.(x-5)2+y2=16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线
x2
m
-y2=1
的一条渐近线和圆x2+y2-4x+3=0相切,则该双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆和双曲线
y2
16
-
x2
m
=1(m>0)有相同的焦点,P(3,4)是椭圆和双曲线渐近线的一个交点,求m的值及椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P是双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
与圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1、F2分别为双曲线C1的左右焦点,则双曲线C1的离心率为(  )
A.
3
+1
B.
3
+1
2
C.
5
+1
2
D.
5
-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A.y=±
3
x
B.y=±
3
3
x
C.y=±
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线
x2
a2
-
y2
b2
=1(a,b>0)
的离心率e=2,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)满足(  )
A.必在圆x2+y2=2内B.必在圆x2+y2=2外
C.必在圆x2+y2=2上D.以上三种情形都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F为双曲线
x2
16
-
y2
9
=1
的左焦点,在x轴上F点的右侧有一点A,以FA为直径的圆与双曲线左、右两支在x轴上方的交点分别为M,N,则
|FN|-|FM|
|FA|
的值为(  )
A.
2
5
B.
5
2
C.
5
4
D.
4
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
a2
-y2=1(a>0)的一个焦点与抛物线x=
1
8
y2的焦点重合,则此双曲线的离心率为(  )
A.
3
3
2
B.
3
C.
2
3
3
D.
4
3
3

查看答案和解析>>

同步练习册答案