分析 (1)利用诱导公式和同角三角函数关系解答;
(2)由sinAcosA=-$\frac{12}{25}$<0,可得A>$\frac{π}{2}$,即可判断出
解答 解:(1)$sin(\frac{3π}{2}-A)cos(\frac{π}{2}+A)$=-cosA•(-sinA)=cosAsinA.
∵$sinA+cosA=\frac{1}{5}$,
∴1+2cosAsinA=$\frac{1}{25}$,
∴cosAsinA=-$\frac{12}{25}$;
(2)由(1)知,cosAsinA=-$\frac{12}{25}$<0,
∴A>$\frac{π}{2}$,
∴△ABC是钝角三角形.
点评 本题考查了三角函数基本关系式,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥-3且x≠-2} | B. | {x|x≥-3且x≠2} | C. | {x|x≥-3} | D. | {x|x≥-2且x≠3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{2}-\frac{y^2}{3}=1$ | B. | ${x^2}-\frac{y^2}{2}=1$ | C. | $\frac{x^2}{2}-{y^2}=1$ | D. | ${x^2}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3] | B. | [-3,0) | C. | (-∞,3] | D. | (0,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com