精英家教网 > 高中数学 > 题目详情
1.设函数f(x)=|logax|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n-m的最小值为$\frac{1}{3}$,则实数a=$\frac{2}{3}$或$\frac{3}{4}$.

分析 通过分类讨论和利用对数函数的单调性即可得出.

解答 解:①若1≤m<n,则f(x)=-logax,
∵f(x)的值域为[0,1],∴f(m)=0,f(n)=1,解得m=1,n=$\frac{1}{a}$,
又∵n-m的最小值为$\frac{1}{3}$,∴$\frac{1}{a}$-1≥$\frac{1}{3}$,及0<a<1,
当等号成立时,解得a=$\frac{3}{4}$,符合题意;
②若0<m<n<1,则f(x)=logax,
∵f(x)的值域为[0,1],∴f(m)=1,f(n)=0,解得m=a,n=1,
又∵n-m的最小值为$\frac{1}{3}$,∴1-a≥$\frac{1}{3}$,及0<a<1,当等号成立时,解得a=$\frac{2}{3}$;
③若0<m<1<n时,根据对数函数的性质得不满足题意.
故答案为:$\frac{2}{3}$或$\frac{3}{4}$.

点评 熟练掌握分类讨论的思想方法和对数函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知焦点在y轴上的椭圆的离心率为$\frac{{2\sqrt{2}}}{3}$,且$(0,2\sqrt{2})$是其中一个焦点.
(1)求该椭圆的标准方程;
(2)过点P(-1,0)的动直线l与中心在原点,半径为2的圆O交于A,B两点,C是椭圆上一点,且$\overrightarrow{AB}•\overrightarrow{CP}$=0,当|$\overrightarrow{CP}$|取得最大值时,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足条件:△ABC的周长为$2+2\sqrt{2}$,记动点C的轨迹为曲线W.
(1)求W的方程;
(2)设过点B的直线l与曲线W交于M,N两点,如果$|{MN}|=\frac{{4\sqrt{2}}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,那么|$\overrightarrow{a}$-4$\overrightarrow{b}$|等于(  )
A.2B.$2\sqrt{3}$C.$\sqrt{13}$D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${(\frac{1}{3})^{-2}}×{log_2}\root{3}{4}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$cos(x+\frac{π}{6})-sinx=\frac{3\sqrt{3}}{5}$,则$cos({x+\frac{π}{3}})$=(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{{\sqrt{3}}}{5}$D.$\frac{{2\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b-a,用[x]表示不超过x的最大整数,例如[3.2]=3,[-2.3]=-3.记{x}=x-[x],设f(x)=[x]•{x},g(x)=x-1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有(  )
A.d=1B.d=2C.d=3D.d=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数y=f(x)定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,计算$S=f(\frac{1}{2015})+f(\frac{2}{2015})+…+f(\frac{4028}{2015})+f(\frac{4029}{2015})$的值-8058)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=tanx,则${f^'}(\frac{4π}{3})$等于$\sqrt{3}$.

查看答案和解析>>

同步练习册答案