精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c都是正数,
(1)若a+c=1,试比较a3+a2c+ab2+b2c与a2b+abc的大小;
(2)若a2+b2+c2=1,求证: ≥3.

【答案】
(1)解:∵a,b,c都是正数,且a+c=1,

∴a3+a2c+ab2+b2c﹣a2b﹣abc=(a2+b2﹣ab)(a+c)= >0,

所以a3+a2c+ab2+b2c>a2b+abc


(2)证明:∵a,b,c都是正数,且a2+b2+c2=1,

=3+ ≥3

当且仅当a=b=c= 取得等号,即 ≥3


【解析】(1)将两个式子作差变形,通过提取公因式,判断符号,得出大小关系;(2)利用配方法证明即可.
【考点精析】利用不等式的证明对题目进行判断即可得到答案,需要熟知不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四组函数中,f(x)与g(x)表示同一个函数的是(
A.f(x)=|x|,
B.f(x)=2x,
C.f(x)=x,
D.f(x)=x,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有10名员工,他们某年的收入如下表:

员工编号

1

2

3

4

5

6

7

8

9

10

年薪(万元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

(1)求该单位员工当年年薪的平均值和中位数;

(2)从该单位中任取2人,此2人中年薪收入高于7万的人数记为,求的分布列和期望;

(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?

附:线性回归方程中系数计算公式分别为:

,其中为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},记f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=(
A.{1,2}
B.{1,2,3}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x∈R,ax2+ax﹣1<0,命题q: +1<0.
(1)若“p或q”为假命题,求实数a的取值范围;
(2)若“非q”是“α∈[m,m+1]”的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,点M在线段PD上.

(1)求证:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小为45°,求BM与平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数f(x)的单调递增区间;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.

查看答案和解析>>

同步练习册答案