精英家教网 > 高中数学 > 题目详情
如图所示,已知ABCD是直角梯形,∠DAB=∠ABC=90°,AB=BC=a,AD=2a,P是平面ABCD外的一点,PA⊥平面ABCD,且PA=a,求点A到平面PCD的距离.
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:首先利用已知条件求出相关的线段长进一步求出S△PCD=
1
2
2
a•
3
a=
6
2
a2
,进一步利用体积相等,VA-PCD=VP-ACD,求出结果.
解答: 解:已知ABCD是直角梯形,取AD的中点E,
∠DAB=∠ABC=90°,AB=BC=a,AD=2a,
所以:CE=a,
PA⊥平面ABCD,且PA=a,
所以:利用勾股定理解得:CD=
2
a,PD=
5
a,PC=
3
a

所以:CD2+PC2=PD2,△PCD是直角三角形.
S△PCD=
1
2
2
a•
3
a=
6
2
a2

所以:VA-PCD=VP-ACD,设点A到平面PCD的距离为h,
则:
1
3
•S△PCD•h=
1
3
S△ACD•PA

解得:h=
6
3
a
点评:本题考查的知识要点:勾股定理及逆定理的应用,锥体的体积运算.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次函数f(x)=x2-2x则有(  )
A、f(3)<f(2)<f(4)
B、f(2)<f(3)<f(4)
C、f(2)<f(4)<f(3)
D、f(4)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若0<α<
π
2
,0<β<
π
2
且α<β,则α-β的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|x-3|-1
(1)若f(x)≥2,求x的取值范围;
(2)?x∈R,f(x)>|x+1|-|a|恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x1,x2为实系数2x2-6x+m=0的两个虚根,且|x1-x2|=
3

(1)求实数m的值;
(2)计算
lim
n→∞
|x1|2n+|x2|2n
|x1-x2|n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
4
=1(a>0)的中心为原点O,左、右焦点分别为F1、F2,离心率为
3
5
5
,点P是直线x=
a2
3
上任意一点,点Q在双曲线E上,且满足
PF2
QF2
=0.
(1)求实数a的值;
(2)证明:直线PQ与直线OQ的斜率之积是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司有20名技术人员,计划开发A,B两类共50件电子器件,每类每件所需人员和预计产值如下:
产品种类每件需要人员数每件产值/万元
A类 
1
2
 
 7.5
B类 
1
3
 6
今制定计划欲使总产量最高,则应开发A类电子器件
 
件,能使产值最高为
 
万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

家政服务公司根据用户满意程度将本公司家政服务员分为两类,其中A类服务员12名,B类服务员x名
(Ⅰ)若采用分层抽样的方法随机抽取20名家政服务员参加技术培训,抽取到B类服务员的人数是16,求x的值;
(Ⅱ)某客户来公司聘请2名家政服务员,但是由于公司人员安排已经接近饱和,只有3名A类家政服务员和2名B类家政服务员可供选择
①请列出该客户的所有可能选择的情况;
②求该客户最终聘请的家政服务员中既有A类又有B类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
9
-
y2
b2
=1(b>0)的左焦点F1的直线l交双曲线的左支于A,B两点,若|AF2|+|BF2|(F2为双曲线的右焦点)的最小值为14,则b=
 

查看答案和解析>>

同步练习册答案