精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列{an}满足a1 , 2a2 , a3+6成等差数列,且a42=9a1a5
(1)求数列{an}的通项公式;
(2)设bn=( an+1)an , 求数列{bn}的前n项和Tn

【答案】
(1)解:设正项等比数列{an}的公比为q>0,∵a1,2a2,a3+6成等差数列,∴2×2a2=a3+6+a1,又a42=9a1a5

,解得a1=q=3.

∴an=3n


(2)解:bn=( an+1)an=(2n+1)3n

∴数列{bn}的前n项和Tn=3×3+5×32+…+(2n+1)3n

3Tn=3×32+5×33+…+(2n﹣1)3n+(2n+1)3n+1

∴﹣2Tn=32+2×(32+33+…+3n)﹣(2n+1)3n+1= +3﹣(2n+1)3n+1=﹣2n3n+1

∴Tn=n3n+1


【解析】(1)利用等差数列与等比数列的通项公式即可得出.(2)bn=( an+1)an=(2n+1)3n . 再利用“错位相减法”与等比数列的前n项和公式即可得出.
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表

周跑量(km/周)

人数

100

120

130

180

220

150

60

30

10

(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:

注:请先用铅笔画,确定后再用黑色水笔描黑

(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点

(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

类别

休闲跑者

核心跑者

精英跑者

装备价格(单位:元)

2500

4000

4500

根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数的最大值为,其图象的对称轴为,且与轴两个交点的横坐标的平方和为.

1)求该一元二次函数;

2)要将该函数图象的顶点平移到原点,请说出平移的方式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 分别为线段上的点,且 .

1)求证 平面

2)若与平面所成的角为求平面与平面所成的锐二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中, 已知圆 ,椭圆 为椭圆右顶点.过原点且异于坐标轴的直线与椭圆交于两点,直线与圆的另一交点为,直线与圆的另一交点为,其中.设直线的斜率分别为

1)求的值;

2)记直线的斜率分别为,是否存在常数,使得?若存在,求值;若不存在,说明理由;

3)求证:直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二项式的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则的值为( )

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左右焦点分别为,与轴正半轴交于点,若为等腰直角三角形,且直线被圆所截得的弦长为2.

(1)求椭圆的方程;

(2)直线与椭圆交于点,线段的中点为,射线与椭圆交于点,点的重心,求证:的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为.

1)若边的中点,求证: ;

2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若a,b,c∈R,f(a),f(b),f(c)为某一个三角形的边长,则实数m的取值范围是(
A.[ ,1]
B.[0,1]
C.[1,2]
D.[ ,2]

查看答案和解析>>

同步练习册答案