精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ax3+bx在x=1处取得极值2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若(m+3)x-x2ex+2x2≤f(x)对于任意的x∈(0,+∞)成立,求实数m的取值范围.

分析 (Ⅰ)根据极值的定义得到关于a,b的方程组,求出a,b的值,从而求出f(x)的表达式;
(Ⅱ)问题等价于m≤xex-x2-2x于任意的x∈(0,+∞)成立,设h(x)=xex-x2-2x,根据函数的单调性求出m的范围即可.

解答 解:(Ⅰ)∵函数f(x)=ax3+bx在x=1处取得极值2,
∴$\left\{\begin{array}{l}f'(1)=3a+b=0\\ f(1)=a+b=2\end{array}\right.$,解得$\left\{\begin{array}{l}a=-1\\ b=3\end{array}\right.$,
∴f(x)=-x3+3x…(5分)
(Ⅱ)∵(m+3)x-x2ex+2x2≤f(x)对于任意的x∈(0,+∞)成立,
∴(m+3)x-x2ex+2x2≤-x3+3x
?m≤xex-x2-2x于任意的x∈(0,+∞)成立
设h(x)=xex-x2-2x,
则h′(x)=ex+xex-2x-2=(x+1)(ex-2),
令h′(x)=0解得x=ln2,
且当0<x<ln2时,h′(x)<0;
当x>ln2时,h′(x)>0,
∴h(x)=xex-x2-2x在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,
∴$h{(x)_{min}}=h(ln2)=ln2•{e^{ln2}}-{(ln2)^2}-2ln2=-{(ln2)^2}$,
∴m≤-(ln2)2

点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{3}$sinωxcosωx+cos2ωx+a(ω>0),其图象相邻对称轴之间的距离为$\frac{π}{2}$,f(x)的最大值为$\frac{1}{2}$.
(Ⅰ)求ω和a;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{24}$个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,3π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数F(x)=(2x-2-x)•f(x),F(x)为偶函数,则函数f(x)为(  )
A.偶函数B.奇函数C.非奇非偶函数D.既奇又偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=ax+\frac{a-2}{x}+2-2a$(a>0).
(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{3}{x^3}-e{x^2}$+mx+1(m∈R),g(x)=$\frac{lnx}{x}$.
(Ⅰ)若m=-3e2,求函数f(x)的极值;
(Ⅱ)若函数f(x)在区间[0,3]上单调递增,求实数m的取值范围;
(Ⅲ)对任意x1,x2∈R+,若g(x1)<f′(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a为正实数,函数f(x)=ax,g(x)=lnx.
(1)求函数h(x)=f(x)•g(x)的极值;
(2)证明:?x0∈R,使得当x>x0时,f(x)>g(x)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C与直线$x+y-2\sqrt{2}=0$相切,圆心在x轴上,且直线y=x被圆C截得的弦长为$4\sqrt{2}$.
(1)求圆C的方程;
(2)过点M(-1,0)作斜率为k的直线l与圆C交于A,B两点,若直线OA与OB的斜率乘积为m,且$\frac{m}{k^2}=-3-\sqrt{2}$,求$\overrightarrow{OA}•\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{3}$x3-mx2+$\frac{3}{2}$mx(m>0)
(1)当m=2时,求函数y=f(x)的单调递增区间;
(2)若函数f(x)既有极大值,又有极小值,且当0≤x≤4m时,f(x)<mx2+($\frac{3}{2}$m-3m2)x+$\frac{32}{3}$恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线y2=4px上的点到直线x+y+3=0的最短距离为$\sqrt{2}$.
(Ⅰ)求抛物线的方程;
(Ⅱ)F为抛物线的焦点,直线l1,l2都过F点,且l1⊥l2,l1交抛物线于A,B两点,l2交抛物线于C,D两点,求|AB|+|CD|的最小值.

查看答案和解析>>

同步练习册答案