精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
25
+
y2
9
=1的右焦点为F,点P为椭圆上一点,且PF=6,点M为PF的中点,则线段OM的长度为(  )
A、1B、2C、3D、4
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据椭圆的定义及标准方程容易求出PF2,因为M为PF的中点,O为FF1的中点,所以OM=
1
2
PF1,这样即可求得OM.
解答: 解:如下图,根据椭圆的定义及椭圆标准方程:6+PF1=10,
∴PF1=4;
∵M为PF的中点,O为FF1的中点;
∴OM为△PFF1的中位线,∴OM=
1
2
PF1=2.
故选:B.
点评:本题考查了椭圆的标准方及其性质,三角形的中位线.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将3张不同的奥运门票分给10名同学中的3人,每人1张,则不同的分法有(  )
A、2610种B、720种
C、240种D、60种

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域上为奇函数的是(  )
A、y=ex+e-x
B、y=-
x
C、y=tan|x|
D、y=ln
1+x
1-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),F1,F2分别为C的左右焦点,|F1F2|=2
3
,且离心率e=
3
2

(1)求椭圆C的方程;
(2)设过椭圆右焦点F2的直线l和椭圆交于两点A,B,是否存在直线l,使得△OAF2与△OBF2的面积比值为2?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品销售量y(件)与销售价格x(元/件)回归方程为
y
=-10x+200,当销售价格为12.5元/件时,预测该商品的销售量大约为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对?x∈[-1,1],不等式x2+mx+3m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2x+alnx在(0,1)上单调递减,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B(-2,0),C(2,0)是△ABC的两个顶点,且满足|sinB-sinC|=
1
2
sinA.
(Ⅰ)求顶点A的轨迹方程;
(Ⅱ)过点C作倾斜角为
π
4
的直线交点A的轨迹于E、F两点,求|EF|.

查看答案和解析>>

科目:高中数学 来源: 题型:

同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=6的概率为(  )
A、
1
2
B、
1
4
C、
1
16
D、
1
8

查看答案和解析>>

同步练习册答案