精英家教网 > 高中数学 > 题目详情
17.已知△ABC的内角A,B,C所对的边分别为a,b,c,a=15,b=10,A=60°,则sinB等于(  )
A.-$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

分析 由已知及正弦定理即可计算得解sinB的值.

解答 解:∵a=15,b=10,A=60°,
∴由正弦定理可得:sinB=$\frac{b•sinA}{a}$=$\frac{10×\frac{\sqrt{3}}{2}}{15}$=$\frac{\sqrt{3}}{3}$.
故选:C.

点评 本题主要考查了正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知数列{an}是首项为1,公差为d(d∈N*)的等差数列,若61是该数列中的一项,则公差d不可能是(  )
A.3B.5C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{x+1}{x-a}$在区间[1,+∞)上单调递减,则实数a的取值范围为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-ax,g(x)=$\frac{1}{2}$x2-lnx-$\frac{5}{2}$.
(1)若f(x)和g(x)在同一点处有相同的极值,求实数a的值;
(2)对于一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求实数a的取值范围;
(3)设G(x)=$\frac{1}{2}$x2-$\frac{5}{2}$-g(x),求证:G(x)>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到函数y=$\sqrt{2}$sinx的图象,只需将函数y=$\sqrt{2}$cos(2x-$\frac{π}{4}$)的图象上所有的点(  )
A.横伸长到原来的2倍,再向左平移$\frac{π}{8}$
B.横伸长到原来的2倍,再向右平移$\frac{π}{4}$个
C.横缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$
D.横缩短到原来的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列$(1+\frac{1}{2})$,$(2+\frac{2}{3})$,$(3+\frac{3}{4})$,$(4+\frac{4}{5})$…的一个通项n+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=a(x-\frac{1}{x})-2lnx$,a∈R.
(1)若a=1,判断函数f(x)是否存在极值,若存在,求出极值;若不存在,说明理由;
(2)设函数$g(x)=-\frac{a}{x}$.若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2-x-2,x∈[-3,3],那么任取一点x0∈[-3,3],使f(x0)≤0的概率是(  )
A.1B.$\frac{1}{2}$C.$\frac{4}{7}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,点C在以AB为直径的圆O上,PA垂直与圆O所在平面,G为△AOC的垂心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,点Q在线段PA上,且PQ=2QA,求三棱锥P-QGC的体积.

查看答案和解析>>

同步练习册答案