精英家教网 > 高中数学 > 题目详情
16.甲、乙、丙、丁四人排成一排,其中甲、乙两人相邻的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{6}$

分析 甲、乙、丙、丁四位同学站成一排照相留念,基本事件总数n=24,甲、乙二人相邻包含的基本事件个数m=12,由此能求出甲、乙二人相邻的概率.

解答 解:甲、乙、丙、丁四位同学站成一排照相留念,基本事件总数n=A44=24,
甲、乙二人相邻包含的基本事件个数m=A22A33=12,
∴甲、乙二人相邻的概率P=$\frac{m}{n}$=$\frac{12}{24}$=$\frac{1}{2}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在△ABC中,∠A=120°,AB=5,AC=3,则BC=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|y=$\sqrt{16-{x}^{2}}$},B={x|$\frac{lo{g}_{2}x}{2-lo{g}_{2}x}$≥0},则A∩B=(  )
A.[1,4]B.[1,4)C.[1,2]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的20%.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的10%,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为5%,问该创客一年(12个月)能否还清银行贷款?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某船在海平面A处测得灯塔B在北偏东30°方向,与A相距6.0海里.船由A向正北方向航行8.1海里达到C处,这时灯塔B与船相距4.2海里(精确到0.1海里)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$满足$\overrightarrow{OA}•\overrightarrow{OB}=0$,且$|{\overrightarrow{OA}}|=|{\overrightarrow{OC}}|=1$,$|{\overrightarrow{OB}}|=\sqrt{3}$,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知全集U={1,2,3,4},A是U的子集,满足A∩{1,2,3}={2},A∪{1,2,3}=U,则集合A={2,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题中,正确的是(1)(3)(4)(填写所有正确结论的序号)
(1)在△ABC中,若tanA+tanB+tanC>0,则△ABC为锐角三角形;
(2)设f(sinx+cosx)=sinxcosx,则f(cos$\frac{π}{6}$)=-$\frac{1}{4}$;
(3)x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)的一条对称轴方程;
(4)已知函数f(x)满足下面关系:(1)f(x+$\frac{π}{2}$)=f(x-$\frac{π}{2}$);(2)当x∈(0,π]时,f(x)=-cosx,则方程f(x)=lg|x|解的个数是8个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设F1,F2为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,且|F1F2|=2c,若椭圆上存在点P使得|PF1|•|PF2|=2c2,则椭圆的离心率的最小值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案