分析 由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:把函数y=sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{3}$,可得y=sin[2(x-$\frac{π}{3}$)+$\frac{π}{4}$]=sin(2x-$\frac{5π}{12}$)的图象;
再把所得图象上各点的横坐标缩短到原来的$\frac{1}{2}$,则所得图象的函数是y=sin(4x-$\frac{5π}{12}$),
故答案为:y=sin(4x-$\frac{5π}{12}$).
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要但非充分条件 | B. | 充分但非必要条件 | ||
| C. | 充要条件 | D. | 既非充分又非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com