分析 (Ⅰ)利用BC为半圆O的直径,AD⊥BC,PA与半圆O切于点A,证明∠PAB=∠BAD,即可证明AB平分∠PAD;
(Ⅱ)证明△PAB∽△PCA,$\frac{PB}{BD}$=$\frac{PC}{CD}$,即可证明$\frac{PB}{PC}=\frac{DB}{DC}$.
解答
证明:(Ⅰ)由题意,BC为半圆O的直径,A为半圆O上一点,
∴∠BAC=90°,
∵AD⊥BC,
∴∠BAD=∠ACD,
∵PA与半圆O切于点A,
∴∠PAB=∠ACD,
∴∠PAB=∠BAD,
∴AB平分∠PAD;
(Ⅱ)连接AC,
∵∠PAB=∠PCA,∠P=∠P,
∴△PAB∽△PCA,
∴$\frac{PA}{PC}=\frac{PB}{PA}=\frac{AB}{AC}$.
在Rt△BAC中,AD⊥CD,
∴$\frac{AB}{AC}=\frac{AD}{CD}=\frac{BD}{AD}$,
∴$\frac{PA}{PC}=\frac{AD}{CD}$,$\frac{PB}{PA}$=$\frac{BD}{AD}$,
∴$\frac{PC}{DC}=\frac{PA}{AD}$,$\frac{PB}{BD}$=$\frac{PA}{AD}$,
∴$\frac{PB}{BD}$=$\frac{PC}{CD}$,
∴$\frac{PB}{PC}=\frac{DB}{DC}$.
点评 本题考查圆的切线的性质,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | ($\sqrt{2}$,$\sqrt{3}$) | C. | ($\sqrt{3}$,2) | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -11 | B. | -8 | C. | 5 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com