精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若B=$\frac{2π}{3}$,BC=5,AC=7,则△ABC的面积S=$\frac{15\sqrt{3}}{4}$.

分析 利用余弦定理列出关系式,将BC=5,AC=7及cosB的值代入求出AB的值,再由sinB的值,利用三角形面积公式即可求出三角形ABC面积.

解答 解:∵在△ABC中,B=$\frac{2π}{3}$,BC=5,AC=7,
∴AC2=BC2+AB2-2BC•ABcosb,即72=52+AB2-2×5AB×cos$\frac{2π}{3}$=25+AB2-10AB×(-$\frac{1}{2}$)=25+AB2+5AB,
整理,得
AB2+5AB-24=0.
解得AB=3(舍去负值).
则S=$\frac{1}{2}$BC•ABsin$\frac{2π}{3}$=$\frac{1}{2}$×5×3×$\frac{\sqrt{3}}{2}$=$\frac{15\sqrt{3}}{4}$.
故答案是:$\frac{15\sqrt{3}}{4}$.

点评 此题考查了正弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足a1=1,an+an+1=2n+1,n∈N*,Sn是数列{$\frac{1}{{a}_{n}}$}的前n项和,则下列结论:①S2n-1=(2n-1)•$\frac{1}{{a}_{n}}$;②S2n=$\frac{1}{2}$Sn;③S2n≥$\frac{3}{2}$-$\frac{1}{{2}^{n}}$+$\frac{1}{2}$Sn;④S2n≥Sn+$\frac{1}{2}$,其中正确的是③④(填写所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知PA与半圆O切于点A,PO交半圆O于点B、C,AD⊥PO于点D.
(Ⅰ)求证AB平分∠PAD;
(Ⅱ)求证$\frac{PB}{PC}=\frac{DB}{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(-1,1),B(-4,5),若$\overrightarrow{BC}=3\overrightarrow{BA}$,则点C的坐标为(  )
A.(-10,13)B.(9,-12)C.(-5,7)D.(5,-7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx+$\sqrt{3}$sinx,sinx-$\sqrt{3}$cosx),x∈R,则<$\overrightarrow{a}$,$\overrightarrow{b}$>的值是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.i为虚数单位,则$|{\frac{1+i}{i}}|$等于(  )
A.1-iB.1+iC.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,AB边上的中线CO的长为4,若动点P满足$\overrightarrow{AP}={sin^2}θ•\overrightarrow{AO}+{cos^2}θ•\overrightarrow{AC}$(θ∈R),则$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$的最小值是(  )
A.-9B.-8C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若数列{an},{bn}的通项公式分别是${a_n}={(-1)^{n+2014}}a$,${b_n}=2+\frac{{{{(-1)}^{n+2015}}}}{n}$,且an<bn对任意n∈N*恒成立,则实数a的取值范围是(  )
A.[-1,$\frac{1}{2}$)B.[-2,$\frac{1}{2}$)C.[-2,$\frac{3}{2}$)D.[-1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=($\frac{3}{4}$)${\;}^{-\frac{1}{3}}$,b=($\frac{4}{3}$)${\;}^{\frac{1}{4}}$,c=($\frac{3}{2}$)${\;}^{-\frac{3}{4}}$,则a,b,c的大小顺序为(  )
A.c<b<aB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

同步练习册答案