精英家教网 > 高中数学 > 题目详情
8.已知x10-px+q被(x+1)2整除,则p=-10,q=9.

分析 根据整式的除法,可得x10+10x+9能被(x+1)2整除,进而根据多项式相等的条件得到答案.

解答 解:∵x10+10x+9=(x+1)2(x8-2x7+3x6-4x5+5x4-6x3+7x2-8x+9),
x10+10x+9能被(x+1)2整除,
故x10+10x+9=x10-px+q,
解得:p=-10,q=9,
故答案为:-10,9

点评 本题考查的知识点是整除的性质,熟练掌握整式的除法的运算法则,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3-3x2+3x-2.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[-2,2]时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点的直角坐标分别为(1,-$\sqrt{3}$),则它的极坐标(  )
A.$({2,\frac{π}{3}})$B.$({1,\frac{π}{3}})$C.$({2,-\frac{π}{6}})$D.$({2,-\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.化简$\overrightarrow{BC}$+$\overrightarrow{AB}$-$\overrightarrow{AC}$的结果是(  )
A.$\overrightarrow{0}$B.2$\overrightarrow{BC}$C.-2$\overrightarrow{BC}$D.2$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)在实数集R上是单调递增函数,且对任意的实数x1,x2,都有f(x1+x2)=f(x1)f(x2).
(1)求f(0)的值;
(2)设f(x)的反函数为f-1(x)(x∈A),求证:对于任意的x1,x2∈A,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(3)求证:对于任意的实数x,都有f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|最小值为(  )
A.3+$\sqrt{3}$B.3-$\sqrt{3}$C.3+$\sqrt{7}$D.3-$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$y=sin(2x-\frac{π}{3})$的最小正周期为π;递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈z;对称轴方程为x=kπ+$\frac{5π}{12}$,k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an}满足:a1=$\frac{3}{2}$,an=$\frac{1}{2}-\frac{2}{{2{a_{n-1}}+1}}$(n=2,3,4,…),且有一个形如an=Asin(ωn+φ)的通项公式,其中A,ω,φ均为实数,且ω>0,则此通项公式an可以为(  )
A.an=$\frac{3}{2}sin({\frac{2π}{3}n-\frac{π}{6}})$B.an=$\sqrt{3}sin({\frac{2π}{3}n+\frac{2π}{3}})$
C.an=-$\frac{3}{2}sin({\frac{2π}{3}n+\frac{5π}{6}})$D.an=$\sqrt{3}sin({\frac{2π}{3}n-\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合{Z|Z=in+i-n,n∈Z},用列举法表示该集合,这个集合是(  )
A.{0,2,-2}B.{0,2}C.{0,2,-2,2i}D.{0,2,-2,2i,-2i}

查看答案和解析>>

同步练习册答案