精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数上的单调性;

2)当时,设为函数图象上任意一点.直线的斜率为,求证:.

【答案】1)答案见解析.(2)证明见解析

【解析】

(1),分两类讨论,可求得函数上的单调区间.
(2)由已知,即证,由于,即证,①设,②构造函数,利用导数研究这两个函数的单调性及函数取值情况,可证结论.

1)∵

时,,函数上单调递减;

时,由,得(舍负)

时,,函数单调递减,

时,,函数单调递增.

2)证明:由已知,即证.

∴即证

①设

, ∴

,∴为增函数

, ∴为增函数

,即

,即

②构造函数

, ∴

上为减函数,

,∴上为减函数,∴

,即成立.

由①②可知, ∴成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )

①公共图书馆业机构数与年份的正相关性较强

②公共图书馆业机构数平均每年增加13.743个

③可预测 2019 年公共图书馆业机构数约为3192个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:).已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.

1)求的值;

2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;

3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线:为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.

(1)说明是哪一种曲线,并将的方程化为极坐标方程;

(2)若直线的方程为,设的交点为的交点为,若的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆过定点,且在轴上截得的弦的长为4.

1)若动圆圆心的轨迹为曲线,求曲线的方程;

2)在曲线的对称轴上是否存在点,使过点的直线与曲线的交点满足为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程k在(0,+∞)上有两个不同的解αβ(αβ),则下列的四个命题正确的是( )

A. sin 2α=2αcos2α B. cos 2α=2αsin2α

C. sin 2β=-2βsin2β D. cos 2β=-2βsin2β

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为等边三角形,的中点.

1)求证:

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是离心率的椭圆的左右项点,P是椭圆E的上顶点,且.

1)求椭圆E的方程;

2)若动直线过点,且与椭圆E交于AB两点,点M与点B关于y轴对称,求证:直线恒过定点.

查看答案和解析>>

同步练习册答案