精英家教网 > 高中数学 > 题目详情
已知抛物线C的方程为y2=2px(p>0),直线:x+y=m与x轴的交点在抛物线C准线的右侧.
(Ⅰ)求证:直线与抛物线C恒有两个不同交点;
(Ⅱ)已知定点A(1,0),若直线与抛物线C的交点为Q,R,满足
AQ
AR
=0
,是否存在实数m,使得原点O到直线的距离不大于
2
4
,若存在,求出正实数p的取值范围;若不存在,请说明理由.
(Ⅰ)证明:由题知m>-
p
2

联立x+y=m与y2=2px,消去x可得y2+2py-2pm=0…(*)
∵p>0且m>-
p
2
,∴△=4p2+8pm>0,
所以直线l与抛物线C恒有两个不同交点;                                 …4分
(Ⅱ)设Q(x1,y1),R(x2,y2),由(*)可得y1+y2=-2p,y1•y2=-2pm
AQ
AR
=(x1-1,y1)•(x2-1,y2)=(x1-1)(x2-1)+y1y2

=(m-1-y1)(m-1-y2)+y1y2

=2y1y2+(1-m)(y1+y2)+(m-1)2=m2-(2+2p)m+1-2p=0
p=
(m-1)2
2(m+1)
=
m+1
2
+
2
m+1
-2

又由原点O到直线l的距离不大于
2
4
,则有-
1
2
≤m≤
1
2

由(Ⅰ)有m>-
p
2
,即m>-
1
4
(m-1)2
m+1
,结合-
1
2
≤m≤
1
2
,化简该不等式得:5m2+2m+1>0,恒成立,
-
1
2
≤m≤
1
2
,令t=m+1,则t∈[
1
2
3
2
]

而函数y=
t
2
+
2
t
-2
[
1
2
3
2
]
上单调递减,∴
1
12
≤p≤
9
4

∴存在m且-
1
2
≤m≤
1
2
,实数p的取值范围为[
1
12
9
4
]
.…10分.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的方程为y=x2,过(0,1)点的直线l与C相交于点A,B,证明:OA⊥OB(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知抛物线C的方程为y2=2px(p>0),直线:x+y=m与x轴的交点在抛物线C准线的右侧.
(Ⅰ)求证:直线与抛物线C恒有两个不同交点;
(Ⅱ)已知定点A(1,0),若直线与抛物线C的交点为Q,R,满足
AQ
AR
=0
,是否存在实数m,使得原点O到直线的距离不大于
2
4
,若存在,求出正实数p的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为x2=2py(p>0),焦点F为 (0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=2px(p>0且p为常数),过焦点F作直线与抛物线交于A(x1,y1),B(x2,y2
①求证:4x1x2=p2
②若抛物线C的准线l与x轴交于N点且AB⊥AN,求|x1-x2|

查看答案和解析>>

同步练习册答案