精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,b1+b2+…+b9=153.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,数列{cn}的前n项和为Tn,求使不等式${T_n}>\frac{k}{57}$对一切n∈N*都成立的最大正整数k的值;
(Ⅲ)设$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1\;,\;l∈{N^*})\\{b_n}(n=2l\;,l∈{N^*})\end{array}\right.$,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.

分析 (Ⅰ)利用an=Sn-Sn-1计算可知数列{an}的通项公式,通过对bn+2-2bn+1+bn=0变形可知bn+2-bn+1=bn+1-bn即数列{bn}是等差数列,进而计算可得结论;
(Ⅱ)通过裂项可知cn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加可知Tn=$\frac{n}{2n+1}$,通过作差可知Tn单调递增,通过解不等式$\frac{1}{3}>\frac{k}{57}$即得结论;
(Ⅲ)分m为奇数、偶数两种情况讨论即可.

解答 解:(Ⅰ)当n=1时,a1=S1=6;
当n≥2时,${a_n}={S_n}-{S_{n-1}}=(\frac{1}{2}{n^2}+\frac{11}{2}n)-[\frac{1}{2}{(n-1)^2}+\frac{11}{2}(n-1)]=n+5$.
而a1=6满足上式.∴an=n+5(n∈N*).
又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn
∴{bn}是等差数列.设公差为d.
又b3=11,b1+b2+…+b9=153,
∴$\left\{\begin{array}{l}{b_1}+2d=11\\ 9{b_1}+36d=153\end{array}\right.$,解得b1=5,d=3.
∴bn=3n+2….(4分)
(Ⅱ)由(I)知${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${T_n}={c_1}+{c_2}+…+{c_n}=\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]=\frac{n}{2n+1}$,
∵${T_{n+1}}-{T_n}=\frac{n+1}{2n+3}-\frac{n}{2n+1}=\frac{1}{(2n+3)(2n+1)}>0$,
∴Tn单调递增,${({T_n})_{min}}={T_1}=\frac{1}{3}$.
令$\frac{1}{3}>\frac{k}{57}$,得k<19,
∴kmax=18.….(8分)
(Ⅲ)结论:存在唯一正整数m=11,使得f(m+15)=5f(m)成立.
理由如下:
∵$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1\;,\;l∈{N^*})\\{b_n}(n=2l\;,l∈{N^*})\end{array}\right.$,
∴需要对m的奇偶性进行讨论:
(1)当m为奇数时,m+15为偶数.
∴3m+47=5m+25,解得:m=11.
(2)当m为偶数时,m+15为奇数.
∴m+20=15m+10,解得:$m=\frac{5}{7}∉{N^*}$(舍去).
综上,存在唯一正整数m=11,使得f(m+15)=5f(m)成立.…(10分)

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设不等式组$\left\{\begin{array}{l}x>0\\ y>0\\ y≤-nx+3n\end{array}\right.$所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和纵坐标均为整数的点)个数为f(n)(n∈N*
(1)求f(1),f(2)的值及f(n)的表达式;
(2)若数列{an}满足a1=1,${a_{n+1}}-{a_n}=f(n),(n∈{N^•})$,求数列{an}的通项公式;
(3)设Sn为数列{bn}的前n项的和,其中${b_n}={2^{f(n)}}$,问是否存在正整数n,t,使$\frac{{{S_n}-t{b_n}}}{{{S_{n+1}}-t{b_{n+1}}}}<\frac{1}{16}$成立?若存在,求出正整数n,t;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合N={x||x|≤1,x∈R},M={x|x≤0,x∈R},则M∩N=(  )
A.{x|-1≤x≤0}B.{x|x≤0}C.{x|0≤x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=(  )
A.5B.9C.log345D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a,b∈(0,+∞),且a,b的等差中项为$\frac{1}{2}$,α=a+$\frac{1}{b}$,β=b+$\frac{1}{a}$,则α+β的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.复数z=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$,i是虚数单位,则z2015=$\frac{\sqrt{2}}{2}$(1-i).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos2$\frac{π}{8}-{sin^2}\frac{π}{8}$的值为(  )
A.-$\frac{{\sqrt{3}}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x-1),x>1}\\{{3}^{x}+2,x≤1}\end{array}\right.$则f(f(log32))的值是(  )
A.1B.2C.5D.1+log32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线l:x-y+1=0与抛物线y=x2交于A,B两点,若点M(1,2),则|MA|•|MB|的值为2.

查看答案和解析>>

同步练习册答案