精英家教网 > 高中数学 > 题目详情
14.集合N={x||x|≤1,x∈R},M={x|x≤0,x∈R},则M∩N=(  )
A.{x|-1≤x≤0}B.{x|x≤0}C.{x|0≤x≤1}D.{x|x≤1}

分析 求出N中不等式的解集确定出N,找出M与N的交集即可.

解答 解:由N中不等式解得:-1≤x≤1,即N={x|-1≤x≤1},
∵M={x|x≤0},
∴M∩N={x|-1≤x≤0},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=x3-3x+1的单调减区间为(  )
A.(1,2)B.(-1,1)C.(-2,-1)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)化简sin(x+180°)cos(-x)sin(-x-180°)tan(-x-180°);
(2)证明:tan2x-sin2x=tan2xsin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 0≤y≤3\end{array}\right.$,则z=3x-y的取值范围是(  )
A.[-3,6]B.[-3,12]C.[-6,12]D.[3,6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果方程cos2x+sinx=1+a有解,则a的取值范围是[-3,$\frac{1}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$α,β∈(0,\frac{π}{2}),sin(α+β)=\frac{{5\sqrt{3}}}{14},sinα=\frac{{4\sqrt{3}}}{7}$,则sinβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.方程$\sqrt{1-{x^2}}$=k(x-1)+2有两个不等实根,则k的取值范围是($\frac{3}{4}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,b1+b2+…+b9=153.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,数列{cn}的前n项和为Tn,求使不等式${T_n}>\frac{k}{57}$对一切n∈N*都成立的最大正整数k的值;
(Ⅲ)设$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1\;,\;l∈{N^*})\\{b_n}(n=2l\;,l∈{N^*})\end{array}\right.$,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=3,b=8,$\overrightarrow m$=(cosA,sinB),$\overrightarrow n$=(cosB,-sinA),又$\overrightarrow m•\overrightarrow n$=$-\frac{1}{2}$.
(1)求角C的值;
(2)求c及△ABC的面积.

查看答案和解析>>

同步练习册答案