【题目】已知函数.
(1)当时,求函数的单调区间;
(2)设,不等式对任意的恒成立,求实数的取值范围.
【答案】(1)当时,在定义域单调递减;当时,函数的单调递增区间为,递减区间为,; (2).
【解析】
(1)求出函数的导数,分为和两种情形,求出函数的单调区间即可;(2)问题等价于对任意的,恒有成立,即,根据,分离,从而求出的范围即可.
(1)函数定义域为,且,
令,得,,
当时,,函数在定义域单调递减;
当时,由,得;由,得或,
所以函数的单调递增区间为,递减区间为,.
综上所述,
当时,在定义域单调递减;
当时,函数的单调递增区间为,递减区间为,.
(2)由(1)知当时,函数在区间单调递减,所以当时,,.
问题等价于:对任意的,恒有成立,即.
因为,则,∴,
设,则当时,取得最小值,
所以,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其上焦点到直线的距离为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于,两点.试探究以线段为直径的圆是否过定点?若过,求出定点坐标,若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在其定义域内存在单调递减区间.
(1)求f(x)的单调递减区间;
(2)设函数,(e是自然对数的底数).是否存在实数a,使g(x)在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器(百台),其总成本为(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)求利润函数的解析式(利润=销售收入-总成本);
(2)工厂生产多少百台产品时,可使利润最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有10所学校,每所都选派若干名男生和若干名女生举行跳棋比赛,同一学校的选手不比赛,不同学校的选手不论男女在两人之间都要进行一场比赛. 在两个男生或两个女生之间的比赛总局数与男生和女生之间的比赛总局数与男生和女生之间的比赛总局数至多相差1,而男生的总人数和女生的总人数也至多相差1. 求证:至少有7所学校选派的男生和女生人数相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.
表1,设备改造后样本的频数分布表:
质量指标值 | ||||||
频数 | 2 | 18 | 48 | 14 | 16 | 2 |
(1)请估计该企业在设备改造前的产品质量指标的平均数;
(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点与短轴的一个端点恰好围成一个面积为的等边三角形.
(1)求椭圆的方程;
(2)如图,设椭圆的左右顶点分别为、,右焦点为,是椭圆上异于,的动点,直线与椭圆在点处的切线交于点,当点运动时,试判断以为直径的圆与直线的位置关系,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com