精英家教网 > 高中数学 > 题目详情
8.已知{an}是等差数列,a1+a2=4,a7+a8=28,则公差等于(  )
A.2B.4C.6D.8

分析 根据条件建立方程关系进行求解即可.

解答 解:∵a1+a2=4,a7+a8=28,
∴两式相减得a7+a8-a1-a2=28-4=24,
即12d=24,
d=2,
故选:A.

点评 本题主要考查等差数列公差的求解,根据条件利用作差法进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.
(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值.
(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)    8   8.2   8.4   8.6   8.8   9
销量y(件)   90   84   83   80    75   68
(Ⅰ)求线性回归方程$\widehat{y}$=bx+a;
(Ⅱ)预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是3.5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).
(参考公式与数据:$\sum_{i=1}^{6}$xiyi=4066,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=434.2,$\sum_{i=1}^{6}$xi=51.$\sum_{i=1}^{6}$yi=480.$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=log${\;}_{\frac{1}{2}}$(x2-4x+3)的递增区间是(  )
A.(-∞,1)B.(3,+∞)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线x2=2py(p>0)的焦点为F,其准线与双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1相交于A,B两点,若△ABF为等边三角形,则△ABF的面积为12$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的奇函数f(x)满足f(x-2)=f(x),且当x∈[1,2]时,f(x)=x2-3x+2,则f(6)=0;f($\frac{1}{2}$)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等比数列{an}中,a1=2,a4=$\frac{1}{4}$.若am=2-15,则m=(  )
A.17B.16C.14D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:?x∈R,使x2-4x+a<0成立,命题q:?x∈R,|x-2|+|x+1|≥a恒成立.
(1)写出命题p的否定;
(2)若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有(  )
A.48种B.36种C.18种D.12种

查看答案和解析>>

同步练习册答案