【题目】以下命题中,正确的命题是:______.
(1)是奇函数,则的值为0;
(2)若,则(、且、);
(3)设集合,,则;
(4)若在单调递增,则的取值集合为.
【答案】(1)(2)(4)
【解析】
根据奇函数的定义可求出的值,可判断出命题(1)的正误;利用对数的运算性质可判断出命题(2)的正误;求出集合、,利用并集的定义求出,可判断出命题(3)的正误;根据二次函数的单调性求出实数的取值范围,可判断出命题(4)的正误.
对于命题(1),函数为奇函数,则,
即,得,解得,命题(1)正确;
对于命题(2),,、且、,
由对数的运算性质得,命题(2)正确;
对于命题(3),,,
,命题(3)错误;
对于命题(4),二次函数的图象开口向上,对称轴为直线,
由于函数在上单调递增,则,解得,命题(4)正确.
因此,正确命题的序号为(1)(2)(4).
故答案为:(1)(2)(4).
科目:高中数学 来源: 题型:
【题目】下列命题中正确的个数是( )
①如果、是两条直线,,那么平行于过的任何一个平面;②如果直线满足,那么与平面内的任何一条直线平行;③如果直线、满足,,则;④如果直线、和平面满足,,,那么;⑤如果与平面内的无数条直线平行,那么直线必平行于平面.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,若已知其在内只取到一个最大值和一个最小值,且当时函数取得最大值为;当,函数取得最小值为.
(1)求出此函数的解析式;
(2)是否存在实数,满足不等式?若存在,求出的范围(或值),若不存在,请说明理由;
(3)若将函数的图像保持横坐标不变纵坐标变为原来的得到函数,再将函数的图像向左平移个单位得到函数,已知函数的最大值为,求满足条件的的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族中的成员仅以自驾或公交方式通勤,分析显示:当中的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;并求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件“取出的两球同色”,“取出的2球中至少有一个黄球”,“取出的2球至少有一个白球”,“取出的两球不同色”,“取出的2球中至多有一个白球”.下列判断中正确的序号为________.
①与为对立事件;②与是互斥事件;③与是对立事件:④;⑤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的边AB所在直线方程为y=3x,BC所在直线方程为y=ax+12,AC边上的高BD所在直线方程为y=﹣x+8.
(1)求实数a的值;
(2)若AC边上的高BD,求边AC所在的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的计算机数量(台) | 10 | 20 | 39 | 81 | 160 |
则下列函数模型中,能较好地反映计算机在第天被感染的数量与之间的关系的是
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com