精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的边AB所在直线方程为y3xBC所在直线方程为yax+12AC边上的高BD所在直线方程为y=﹣x+8

1)求实数a的值;

2)若AC边上的高BD,求边AC所在的直线方程.

【答案】(1)a=﹣3.(2)xy8xy0

【解析】

1)把联立求出,代入即可求解.

2)设Dbc),由点上以及AC边上的高BD,列方程组求出

根据垂直以及点斜式方程即可求解.

(1)联立,解得x2y6,所以 ,点

代入yax+12,可得:62a+12,解得a=﹣3

2)设Dbc),则,解得b0c8,或b4c4

∴边AC所在的直线方程为:y8x,或y4x4

化为:xy8,或xy0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以万元的优惠价转让给了尚有万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件元;②该店月销量(百件)与销售价格(元)的关系如图所示;③每月需各种开支元.

1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,求的取值范围;

2)若,是否存在实数,使得都成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,作出函数的图象;

2)是否存在实数a,使得函数在区间上有最小值8,若存在求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题中,正确的命题是:______.

1是奇函数,则的值为0

2)若,则);

3)设集合,则

4)若单调递增,则的取值集合为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图放置的边长为2的正三角形ABC沿x轴滚动,记滚动过程中顶点A的横、纵坐标分别为,且在映射作用下的象,则下列说法中:

映射的值域是

映射不是一个函数;

映射是函数,且是偶函数;

映射是函数,且单增区间为

其中正确说法的序号是___________.

说明:“正三角形ABC沿x轴滚动包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在x轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形ABC可以沿x轴负方向滚动.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使在区间上恒成立,则称区间是函数公共邻域.设函数的反函数为,函数的图像与函数的图像关于点对称.

1)求函数的解析式;

2)若,求函数的定义域;

3)是否存在实数,使得区间公共邻域,若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数f(x)的定义域,判断并证明函数f(x)的奇偶性;

(Ⅱ)是否存在这样的实数k,使f(k-x2)+f(2k-x4)≥0对一切恒成立,若存在,试求出k的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,双十一购物狂欢节(简称“双11”)活动已成为中国电子商务行业年度盛事,某网络商家为制定2018年“双11”活动营销策略,调查了2017年“双11”活动期间每位网购客户用于网购时间(单位:小时),发现近似服从正态分布

(1)求的估计值;

(2)该商家随机抽取参与2017年“双11”活动的10000名网购客户,这10000名客户在2017年“双11”活动期间用于网购时间属于区间的客户数为.该商家计划在2018年“双11”活动前对这名客户发送广告,所发广告的费用为每位客户0.05元.

(i)求该商家所发广告总费用的平均估计值

(ii)求使取最大值时的整数的值

附:若随机变量服从正态分布

查看答案和解析>>

同步练习册答案