| A. | $\sqrt{99}$ | B. | $\sqrt{33}$ | C. | $4\sqrt{2}$ | D. | 3 |
分析 由2an2=an-12+an+12(n≥2),可得数列$\{{a}_{n}^{2}\}$为等差数列,进而定点bn=$\frac{1}{{{a_n}+{a_{n+1}}}}$=$\frac{1}{3}(\sqrt{3n+1}-\sqrt{3n-2})$,再利用“裂项求和”方法即可得出.
解答 解:∵2an2=an-12+an+12(n≥2),
∴数列$\{{a}_{n}^{2}\}$为等差数列,首项为1,公差为22-1=3.
∴${a}_{n}^{2}$=1+3(n-1)=3n-2.an>0.
∴an=$\sqrt{3n-2}$,
∴bn=$\frac{1}{{{a_n}+{a_{n+1}}}}$=$\frac{1}{\sqrt{3n-2}+\sqrt{3n+1}}$=$\frac{1}{3}(\sqrt{3n+1}-\sqrt{3n-2})$,
∴数列{bn}的前n项和为Sn=$\frac{1}{3}[(\sqrt{4}-\sqrt{1})$+$(\sqrt{7}-\sqrt{4})$+…+$(\sqrt{3n+1}-\sqrt{3n-2})]$
=$\frac{1}{3}(\sqrt{3n+1}-1)$.
则S33=$\frac{1}{3}(\sqrt{100}-1)$=3.
故选:D.
点评 本题考查了等差数列的定义通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | $\frac{17}{5}$ | D. | $\frac{19}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com