精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x,函数f(x)在y轴左侧的图象如图所示.
(1)补全f(x)的图象,并写出函数的单调区间;
(2)若函数g(x)=af(x)-2ax+2,x∈[1,2],求函数g(x)的最小值.

分析 (1)根据奇函数图象的对称性,补全f(x)的图象,并写出函数的单调区间;
(2)利用函数的奇偶性和已知的x≤0时解析式,求出函数在x>0时的解析式,得到函数g(x)的解析式,再通过分类讨论研究二次函数在区间上的值域,得到本题结论.

解答 解:(1)图象如图所示,
函数的单调增区间是(-1,1),单调减区间是(-∞,-1),(1,+∞);
(2)∵函数f(x)是定义在R上的奇函数,
∴f(-x)=-f(x).
∵当x≤0时,f(x)=x2+2x,
∴当x>0时,-x<0,
f(x)=-f(-x)=-[(-x)2+(-x)]=-x2+2x,
∵函数g(x)=f(x)-2ax+2,x∈[1,2],
∴g(x)=-ax2+2,x∈[1,2],
当a<0时,[g(x)]min=g(2)=-4a+2;
当a>0时,[g(x)]min=g(1)=-a+2.
∴[g(x)]min=$\left\{\begin{array}{l}{-4a+2,a<0}\\{-a+2,a>0}\end{array}\right.$.

点评 本题考查了函数的奇偶性、函数解析式、二次函数在区间上的值域,本题难度不大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=1,且点(an,an+1)在函数f(x)=$\frac{x}{4x+1}$的图象上,bn=$\frac{1}{{a}_{n}}$.(n∈N*
(Ⅰ)求证:数列{bn}是等差数列,并求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn-2n,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2alnx-x+$\frac{1}{x}$(a∈R,且a≠0),g(x)=-x2-x+2$\sqrt{2}$b(b∈R).
(1)若f(x)是在定义域上有极值,求实数a的取值范围;
(2)当a=$\sqrt{2}$时,若对?x1∈[1,e],总?x2∈[1,e],使得f(x1)<g(x2),求实数b的取值范围;(其中e为自然对数的底数)
(3)①若a=1,证明:不等式f(x)<$\frac{1}{x}$在x∈[2,+∞)上恒成立;
②对?n∈N,且n≥2,证明:ln(n!)4<(n-1)(n+2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=x4-2x2+5的定义域为[0,a],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知y=tan(2x-$\frac{π}{3}$).
(1)求周期;
(2)求定义域;
(3)写出使tan(2x-$\frac{π}{3}$)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=$\frac{2(x+1)^{2}+3ax}{{x}^{2}+1}$,a为常数,若f(x)最大值为M,最小值为m,则M+m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.己知函数f(x)=a+$\frac{1}{{3}^{x}+1}$是奇函数.
(1)求实数a的值;
(2)证明:该函数在R上是减函数;
(3)若f(m+1)>f(2m),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义域为R的偶函数f(x),当x≥0时,f(x)=2x-x2,则f(-1)=1;当 x<0时,f(x)=-2x-x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某公安分局为了打击辖区吸毒、贩毒等犯罪括动,某日派出三名警员,同时对辖区9个娱乐杨所(9个场所分布在一条线上)进行突击抽查(每名警员只检查一个),为了保密起见,各警员所检查的场所不能相邻且都不去首末位置的两个场所,则安排三名警员的方法种数为 (  )
A.60B.120C.360D.494

查看答案和解析>>

同步练习册答案