精英家教网 > 高中数学 > 题目详情
8.抛物线y2=8x的焦点到双曲线${x^2}-\frac{y^2}{3}=1$的渐近线的距离是$\sqrt{3}$.

分析 求出抛物线y2=8x的焦点坐标、双曲线${x^2}-\frac{y^2}{3}=1$的渐近线,即可求出结论.

解答 解:抛物线y2=8x的焦点(2,0)到双曲线${x^2}-\frac{y^2}{3}=1$的渐近线y=$±\sqrt{3}$x的距离是d=$\frac{|±2\sqrt{3}|}{\sqrt{3+1}}$=$\sqrt{3}$,
故答案为$\sqrt{3}$.

点评 本题考查抛物线、双曲线的性质,考查点到直线距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x(1+lnx).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(Ⅲ)若斜率为k的直线与曲线y=f'(x)交于A(x1,y1),B(x2,y2)两点,其中x1<x2,求证:${x_1}<\frac{1}{k}<{x_2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别是a、b、c,已知$\sqrt{3}a=2csinA$且c<b. 
(Ⅰ)求角C的大小;
(Ⅱ)若b=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正四面体ABCD中,E、F分别为边AB、BD的中点,则异面直线AF、CE所成角的余弦值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|x2=x},N={-1,0,1},则M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆C的标准方程和长轴长;
(Ⅱ)设F为椭圆C的左焦点,P为直线x=-3上任意一点,过点F作直线PF的垂线交椭圆C于M,N,记d1,d2分别为点M和N到直线OP的距离,证明:d1=d2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}{(x-a)^2}+e,x≤2\\ \frac{x}{1nx}+a+10,x>2\end{array}$,(e是自然对数的底数),若f(2)是函数f(x)的最小值,则a的取值范围是(  )
A.[-1,6]B.[1,4]C.[2,4]D.[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),定义椭圆的“伴随圆”方程为x2+y2=a2+b2;若抛物线x2=4y的焦点与椭圆C的一个短轴重合,且椭圆C的离心率为$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程和“伴随圆”E的方程;
(2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点.
①证明:PA⊥PB;
②若直线OP,OQ的斜率存在,设其分别为k1,k2,试判断k1k2是否为定值,若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱锥A-BCD中,AB⊥平面BCD,AC=AD=2,BC=BD=1,点E是线段AD的中点.
(1)如果CD=$\sqrt{2}$,求证:平面BCE⊥平面ABD;
(2)如果∠CBD=$\frac{2π}{3}$,求二面角A-BE-C的余弦值.

查看答案和解析>>

同步练习册答案